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Abstract 14 

The breakup of Pangaea was accompanied by extensive, episodic, magmatic activity. Several 15 
Large Igneous Provinces (LIPs) formed, such as the Central Atlantic Magmatic Province 16 
(CAMP) and the North Atlantic Igneous Province (NAIP). Here, we review the chronology of 17 
Pangaea breakup and related large-scale magmatism. We review the Triassic formation of the 18 
Central Atlantic Ocean, the breakup between East and West Gondwana in the Middle Jurassic, 19 
the Early Cretaceous opening of the South Atlantic, the Cretaceous separation of India from 20 
Antarctica, and finally the formation of the North Atlantic in the Mesozoic-Cenozoic. We 21 
demonstrate that throughout the dispersal of Pangaea, major volcanism typically occurs distal 22 
from the locus of rift initiation and initial oceanic crust accretion. There is no location where 23 
extension propagates away from a newly formed LIP. Instead, LIPs are coincident with major 24 
lithosphere-scale shear movements, aborted rifts and splinters of continental crust rifted far out 25 
into the oceanic domain. These observations suggest that a fundamental reappraisal of the 26 
causes and consequences of Gondwana-breakup-related LIPs is in order. 27 

  28 



 

 

1.0 Introduction  29 

Throughout geological time the majority of continental lithosphere has several times been 30 
assembled into supercontinents (Rogers, 1996; Stampfli et al., 2013; Frizon De Lamotte et al., 31 
2015; Merdith et al., 2019) (Fig. 1). The processes that initiate the dispersal of these large 32 
continental accumulations remain controversial (Santosh et al., 2009; Audet and Bürgmann, 33 
2011; Murphy and Nance, 2013; Nance et al., 2014; Petersen and Schiffer, 2016; Peace et al., 34 
2017a; Petersen et al., 2018; Schiffer et al., 2018; Olierook et al., 2019). The debate primarily 35 
revolves around whether continental dispersal is driven by deep-rooted thermal anomalies 36 
(Morgan-type mantle plumes) or shallow plate tectonic processes (Storey, 1995; Dalziel et al., 37 
2000; Beutel et al., 2005; Frizon De Lamotte et al., 2015; Pirajno and Santosh, 2015; Yeh and 38 
Shellnutt, 2016; Keppie, 2016; Petersen et al., 2018; Heron, 2018).  39 

The concept that plumes from the deep mantle are the main driver of continental rifting was 40 
originally proposed by Morgan (1971) who suggested plumes provide “the motive force for 41 
continental drift” and that “currents in the asthenosphere spreading radially away from each 42 
upwelling will produce stresses on the bottoms of the lithospheric plates which, together with 43 
the stresses generated by the plate to plate interactions at rises, faults and trenches, will 44 
determine the direction in which each plate moves”. Despite the fact that continental breakup 45 
can often be magma-poor (Whitmarsh et al., 2001; Reston, 2009; Franke, 2013) this hypothesis 46 
continues to be commonly invoked as a default to explain continental breakup and plate 47 
motions, particularly the case where rifting is accompanied by major magmatism (Richards et 48 
al., 1989; White, 1992; Campbell and Kerr, 2007).  49 

Alternative models have nevertheless been proposed. The coincidence between the primary 50 
Atlantic “hot spots” and the spreading plate boundary has been pointed out (Julian et al., 2015), 51 
as has their persistence in near-ridge localities. Such a causal relationship means that those “hot 52 
spots” cannot be stationary relative to the underlying mantle. That observation has inspired a 53 
number of models including ones that attribute the excess volcanism to fusibility in the source, 54 
brought about by excess volatiles (e.g., Bonath, 1990; Ligi et al., 2005) or enhanced source 55 
fertility resulting from recycled near-surface materials (Foulger and Anderson, 2005; Foulger 56 
et al., 2005b). In the plume model, the persistence of the excess volcanism on the ridge is 57 
attributed to “upside-down drainage”, i.e., lateral flow of hot material from a non-ridge-centred, 58 
migrating plume, along the underside of the lithosphere to an eruptive site where the lithosphere 59 
is thinnest (Sleep, 1996). 60 

A number of non-ridge-centred “hot spots” have also been proposed to lie in the Atlantic, 61 
including at Bermuda, the Canary Islands, the Cape Verde Islands and St. Helena. It remains 62 
an unanswered question why, if they are fed by deep-mantle plumes, are their products not also 63 
channelled to the spreading ridge. Some of these have been attributed to different plume- and 64 
non-plume origins, often based on the geochemistry of their lavas. This may be variable, in 65 
particular in the source water contents. Proposed mechanisms include lateral flow from a 66 
nearby, branching mantle plume (e.g., the proposed multi-headed Tristan plume), flexure of 67 
the edge of the continental shelf resulting in lithosphere rupture (e.g., for the Canary and Cape 68 
Verde volcanism), and extraction of melt from the low-velocity zone that is ubiquitous beneath 69 
the lithosphere (e.g., Presnall and Gudfinnsson, 2011). Shear heating resulting from motion of 70 



 

 

the plates must also contribute heat and induce formation of partial melt in the asthenosphere 71 
and can account for the availability of melt away from plate boundaries everywhere (Doglioni 72 
et al., 2005). 73 

To date, there has been limited discussion of whether the rifting process in itself can account 74 
for the excess volcanism observed (Peace et al., 2017a). This is likely partly because there has 75 
been relatively little attention paid to modelling the volumes, and ranges in volume, of melt 76 
observed (Petersen et al., 2018). Where this has been done, the results are compelling. 77 
Asthenospheric upwelling is an inevitable consequence of lithospheric rifting, regardless of the 78 
driving mechanism (Huismans et al., 2001; Merle, 2011). In addition, numerical models that 79 
include small-scale upwelling can reproduce LIP-scale volumes of melt (Simon et al., 2009). 80 

However, not all rifted margins contain large amounts of magma and there is a continuous 81 
spectrum between ‘magma-rich’ and ‘magma-poor’. This is popularly attributed to the 82 
presence or absence of a nearby mantle plume or thermal anomaly, thereby attributing it to 83 
variations in temperature of the source. Drawing from the alternative, non-thermal models that 84 
have been proposed for on-ridge excess magmatism, an explanation in variations in source 85 
fusibility and fertility also presents a feasible explanation (Korenaga and Kelemen, 2000; 86 
White et al., 2003; Korenaga, 2004; Petersen and Schiffer, 2016; Peace et al., 2017b). 87 

The great structural diversity of continental rifts testifies to their dependence on not just one 88 
but many factors (Şengör and Natal’in, 2001; Merle, 2011). Rifts develop in different tectonic 89 
environments, on diverse pre-existing structures (Doré et al., 1997; Petersen and Schiffer, 90 
2016; Schiffer et al., this volume), and under slow- or fast-extending conditions (Lundin et al., 91 
2018). They may evolve to form narrow or wide extending zones (Davison, 1997), be magma-92 
poor or magma-rich (Franke, 2013), and exhibit asymmetric or symmetric extension (Becker 93 
et al., 2014; Peace et al., 2016). 94 

In this article we review the spatial and chronological relationships between large-volume 95 
magmatism and rifting to synthesise the large volume of material already published on this 96 
topic rather than introduce new analyses. We analyse in detail Pangaea’s dispersal (Fig. 1) in 97 
relation to LIPs and other magmatism to test the predictions of a causal relationship between 98 
proposed plumes and continental rifting in the Pangaean realm. Specifically we test two 99 
predictions of the active rifting hypothesis, one chronological and the other kinematic: 100 

1. Large-scale volcanism is generated during or just after lithospheric doming but 101 
before rifting and breakup (chronological); and 102 

2. Rifting and breakup initiates at the location of thermal uplift and propagates away 103 
from it (kinematics). 104 

2.0 The assembly and dispersal of Pangaea  105 

Pangaea was constructed from multiple lithospheric plates that resulted from the disintegration 106 
of the previous supercontinent Rodinia. Before Rodinia broke apart in the Late Proterozoic, 107 
between 1000 and 700 Ma (Veevers, 2004), it comprised North America, Baltica, Siberia, 108 
Gondwana, and other minor components (Torsvik et al., 1996; Stampfli et al., 2013). The 109 



 

 

disassembly of Rodinia is poorly understood, as geological evidence has been overprinted by 110 
later orogenic cycles (Scotese, 2009; Li et al., 2008; Cawood and Pisarevsky, 2006), while the 111 
assembly and disassembly of Pangaea is better understood and captured in detailed 112 
palaeogeographic reconstructions (Golonka et al., 1994; Stampfli et al., 2013; Blakey and 113 
Wong, 2003; Cocks and Torsvik, 2006; Scotese, 2009) (Fig. 1).  114 

Pangaea’s earliest breakup and formation of the first oceanic crust occurred in the Triassic and 115 
formed the Central Atlantic Ocean. Subsequently, West Gondwana (Africa and South America) 116 
and East Gondwana (Antarctica, Australia, India, Madagascar, and New Zealand) started to 117 
separate in the Middle Jurassic. This was followed by the Early Cretaceous separation of Africa 118 
from South America during the opening of the South Atlantic, then the Cretaceous separation 119 
of India from Antarctica, and finally the successful breakup of Scandinavia and Greenland, and 120 
the birth of the North Atlantic in the Cretaceous to Early Cenozoic (Fig. 1). Here, we investigate 121 
if volcanism associated with each breakup event occurred before, during, or after rifting. We 122 
also review the kinematic evolution of each rift and their initial breakup positions in relation to 123 
LIPs throughout the dispersal of Gondwana and Laurasia. 124 

The Carboniferous–Permian assembly of Pangaea was preceded by four major tectonic events:  125 

1) Disassembly of the supercontinent Rodinia in the late Proterozoic, when Laurentia, 126 
Baltica, and Siberia separated from a number of other continents, opening the Iapetus 127 
Ocean and the Tornquist Sea between them. Gondwana formed shortly afterwards, in 128 
the Cambrian, by re-assembly of the remaining dispersed continents of India, Australia, 129 
Sahara, West Africa and other minor blocks (Li et al., 2008).  130 

2) In Ordovician-Devonian times, the Caledonian Orogeny sutured Laurussia (North 131 
America, Baltica and Avalonia) which had previously drifted northward from 132 
Gondwana forming the Rheic Ocean (Cocks and Torsvik, 2011).  133 

3) In the Devonian, peri-Gondwana terranes, rifted from Gondwana, opened the 134 
Palaeotethys and accreted to southern Laurasia during the Devonian Variscan Orogeny. 135 
Siberia and Kazakhstan docked along the eastern Laurussian margin, during the Uralide 136 
Orogeny to form Laurasia. This was followed by Carboniferous-Jurassic collision 137 
between Gondwana and Laurasia along the Appalachian fold belt, finally assembling 138 
western Pangaea (Stampfli and Borel, 2002; Cocks and Torsvik, 2007).  139 

4) Assembly of eastern Pangaea (central and SE Asia) in the late Permian-Jurassic 140 
involved the closure of the Palaeotethys and the Mongol–Okhotsk Ocean to accrete 141 
peri-Gondwana terranes to Siberia and Kazakstan in the Late Jurassic (Zorin, 1999; 142 
Kravchinsky et al., 2002; Sengor, 1996; Tomurtogoo et al., 2005). The repeated rifting 143 
of peri-Gondwana terranes opened the Neotethys.  144 

The dispersal of Pangaea (Fig. 1) occurred through an extended period of Earth’s history and 145 
is well-summarised in earlier papers (e.g., Dietz and Holden, 1970; Frizon De Lamotte et al., 146 
2015).  147 



 

 

Rifting began in western Pangaea in the Triassic-early Jurassic, coeval with the final phases of 148 
the assembly of eastern Pangaea, initiating the disassembly of Pangaea. In the mid-Jurassic, 149 
continental breakup and seafloor spreading opened the Central Atlantic-Caribbean (Biari et al., 150 
2017) and the Indian Ocean (Powell et al., 1988), breaking Pangaea apart again between North 151 
America, West Gondwana (South America and Africa) and East Gondwana (India, Antarctica, 152 
Madagascar and Australia) (Schettino and Scotese, 2005). By the end of the Early Cretaceous, 153 
East Gondwana was completely detached from West Gondwana, while India separated from 154 
Antarctica and Australia and the Amerasia Basin opened in the Arctic. Rifting leading to 155 
seafloor spreading started separating South America and Africa from south to north, finally 156 
adjoining with Central Atlantic Ocean spreading in the mid-late Cretaceous. Madagascar began 157 
diverging from Africa in the Middle Jurassic (Phethean et al., 2016). This was followed by the 158 
Labrador Sea opening in the Late Cretaceous (Roest and Srivastava, 1989; Roest and 159 
Srivastava, 1989; Chalmers and Pulvertaft, 2001; Peace et al., 2016; Peace et al., 2018a; 160 
Abdelmalak et al., 2018), along with the Gulf of Aden (Courtillot, 1980). Early in the Cenozoic, 161 
the Labrador Sea was gradually abandoned in favour of rifting between North America-162 
Greenland and Europe which opened the NE Atlantic in the Palaeocene (Srivastava, 1978; 163 
Gaina et al., 2017b). The opening of the North Atlantic represents the dispersal and end of the 164 
Laurasian continental amalgamation that formed the northern constituent of the Pangaea 165 
supercontinent (Hansen et al., 2009; Gaina et al., 2009; Frizon De Lamotte et al., 2015). At the 166 
same time Australia separated from Antarctica and Zealandia (Veevers, 2012; Williams et al., 167 
2019), and the Gakkel Ridge started opening the Eurasia Basin in the Arctic (Thórarinsson et 168 
al., 2015). 169 

3.0 The opening of the Central Atlantic  170 

The Central Atlantic is defined here as the region bounded to the north by the Pico and Gloria 171 
fracture zones and to the south by the Fifteen-Twenty and Guinean fracture zones (Fig. 2). This 172 
oceanic basin comprises the oldest part of the Atlantic Ocean, with oceanic crust dating back 173 
to the Triassic-Jurassic boundary (Biari et al., 2017). As this region contains the earliest 174 
breakup and formation of oceanic crust, it is a prime region for understanding the whole 175 
Atlantic system, including the North and South Atlantic Oceans. Conversely, this area is 176 
difficult to explore due to the many complexities involved in the rifting process (Pindell and 177 
Dewey, 1982; Reston, 2009). 178 

The North American-African segment of the Central Atlantic has undergone multiple suturing 179 
and breakup events along similar axes over at least two Wilson Cycles, suggesting a major 180 
control of inheritance in this region (Wilson, 1966; Pique and Laville, 1996; Thomas, 2018). 181 
Furthermore, the continental margins are buried below voluminous salt bodies, making seismic 182 
imaging difficult (e.g., Labails et al., 2010). In addition, dating oceanic crust older than Chron 183 
M-25 (~155 Ma) has proven problematic because of the Jurassic magnetic quiet zone (Roeser 184 
et al., 2002). Breakup of the Central Atlantic was contemporaneous with significant 185 
magmatism, namely the Central Atlantic Magmatic Province (CAMP), one of the most 186 
significant LIPs which may correspond to the end-Triassic mass extinction (Marzoli et al., 187 
1999; Verati et al., 2007; Nomade et al., 2007; Panfili et al., 2019). 188 

3.1 Overview of Central Atlantic rifting and breakup 189 



 

 

The Central Atlantic Ocean opened after a protracted period of rifting (Biari et al., 2017), which 190 
led to the formation of major rift basins on the continental margins (Withjack et al., 2012), and 191 
is claimed to have displayed significant asymmetry between the Scotian and the Moroccan 192 
margins (Maillard et al., 2006). Several ridge-jumps may have occurred during early opening 193 
(e.g., Labails et al., 2010). There is also a significant difference in rifting style between the 194 
northern and southern parts (Leleu et al., 2016). Extension began in the northern Central 195 
Atlantic in the Anisian (Middle Triassic) and the Carnian (Late Triassic) in the southern Central 196 
Atlantic, long-lived passive rifting preceded emplacement of the Central Atlantic Magmatic 197 
Province) CAMP at ~201 Ma (Leleu et al., 2016). 198 

Seafloor spreading is thought to have started around 180–200 Ma, either during the Late 199 
Sinemurian (195 Ma) (Sahabi et al., 2004) or the Middle Jurassic (175 Ma) (Klitgord and 200 
Schouten, 1986). Labails et al. (2010) suggested that the opening of the Central Atlantic started 201 
during late Sinemurian (190 Ma), and that initial spreading (up to 170 Ma) was characterised 202 
by extremely slow crustal production (~0.8 cm/y half spreading rate). In addition, Labails et al. 203 
(2010) show that at the time of the Blake Spur Magnetic Anomaly (BSMA) (170 Ma), the 204 
direction of the relative plate motion between Laurentia and Africa changed from NNW-SSE 205 
to NW-SE and the half spreading rate increased to ~1.7 cm/y. Labails et al. (2010) also 206 
identified a conjugate magnetic anomaly to the BSMA, which they suggest rules out the 207 
possibility of a ridge jump. Labails et al. (2010) further reports a significant spreading 208 
asymmetry, producing more oceanic crust on the American plate. In addition to the temporal 209 
variation in spreading rates identified by Labails et al. (2010), spreading rates in the northern 210 
Central Atlantic are thought to be lower than those of the southern Central Atlantic (Klitgord 211 
and Schouten, 1986). 212 

While many existing plate reconstructions show isochronous breakup along the whole margin, 213 
a detailed analysis of tectonic structures shows differences in the timing for the American 214 
margin (Withjack et al., 1998). In particular, Withjack et al (1998) showed that the rift-drift 215 
transition offshore of the SE USA took place at around 200 Ma, while offshore Canada this 216 
transition is dated to around 185 Ma. Le Roy and Piqué (2001) analysed rift structures at the 217 
Moroccan margin and found a westward migration of extension during Carnian to Rhaetian 218 
(Late Triassic) times. They conclude that oceanic accretion could have already started in the 219 
early Lower Jurassic. With the assumption of a half spreading rate of 0.8 cm/y (Labails et al., 220 
2010), an interpolation of magnetic anomalies by Roeser et al. (2002) yielded an age estimate 221 
for the initial ocean crust offshore Morocco of 193.5 Ma. By forward modelling of magnetic 222 
measurements, Davis et al. (2018) concluded that the formation of Seaward dipping reflector 223 
(SDR) packages most probably has taken place at a relatively low extension rate (< 2 cm/y full-224 
spreading). The width of the SDRs suggests that formation of a complete SDR wedge would 225 
have taken at least 6 Myr. Assuming that the emplacement of SDRs started directly after the 226 
emplacement of the CAMP LIP, Davis et al. (2018) concluded that the earliest oceanic crust 227 
within the Central Atlantic has an age of ~195 Ma or younger. 228 

3.2 Rifting and magmatism  229 

The opening of the Central Atlantic was contemporaneous with the production of extensive 230 
dykes, sills, and surface flows along the margins and interiors of eastern North America, NE 231 



 

 

South America, NW Africa, and southwestern Europe (Hodych and Hayatsu, 1980; Papezik 232 
and Hodych, 1980; Deckart et al., 2005; Nomade et al., 2007; Kontak, 2008; Bensalah et al., 233 
2011; Shellnutt et al., 2017; Denyszyn et al., 2018). This association of basaltic magmatism 234 
with continental rifting and breakup indicates features and mechanics of the mantle during both 235 
events. The CAMP is certainly one of the largest and most important LIPs globally recognised 236 
(Bryan and Ernst, 2008).  237 

Since the 1970s, similarities between Early Mesozoic basalts on the margins of eastern North 238 
America and NW Africa have been recognised (e.g., Weigand and Ragland, 1970; May 1971; 239 
Bertrand and Coffrant, 1977). The term “CAMP” was first used by Marzoli et al. (1999), who 240 
included dykes and sills in NE South America. The extent of the CAMP is primarily defined 241 
in previous work by the location of dykes, with the CAMP boundaries drawn based on their 242 
farthest known extent. The petrology of the igneous rocks comprising the CAMP distinguishes 243 
them from the older and younger basaltic intrusions in the same regions (e.g., Merle et al., 244 
2013). Swarms of related dykes tend to occur in distinct sets of dozens to hundreds with similar 245 
orientations and field characteristics. Sills of the CAMP occur both within Mesozoic basins 246 
and also in older crustal rocks in South America and Africa. Large tholeiite sills are also 247 
mapped in Brazil and western Africa (Davies et al., 2017; Marzoli et al., 1999), while smaller 248 
but still-considerable examples are well known in the eastern USA in the Hartford, Newark, 249 
and Deep River Mesozoic basins, though not in the older basement rocks.  250 

Mesozoic basins that preserve CAMP extrusive basalts cover a total area of about 300,000 km2 251 
(McHone, 2003). However, dykes and sills of the CAMP that fed the basin basalts also occur 252 
across 11,000,000 km2 within four continents, centred upon but extending far outside of the 253 
initial Pangaean rift zone (Fig. 2). The breadth of the CAMP exceeds 5,000 km, with several 254 
dykes longer than 500 km, sills exceeding 100,000 km3, and lava flows possibly larger than 255 
50,000 km3 (McHone, 1996). If only half of the continental CAMP area was originally covered 256 
by 200 m of lava, the total volume of the CAMP and the East Coast Margin Igneous Province 257 
(ECMIP; the thick rift-related igneous package interpreted to underlie the North American 258 
Central Atlantic margin e.g., Holbrook and Kelemen, 1993) extrusive basalt would exceed 259 
2,400,000 km3 and represent one of the largest subaerial flood basalt ever to erupt on Earth. A 260 
very large volume may also remain in the uppermost crust in the form of dykes and sills. In 261 
addition, basalts of the ECMIP of North America, which most likely cause the East Coast 262 
Magnetic Anomaly (Kelemen and Holbrook, 1995), have a submarine area of about 60,000 263 
km2, with perhaps 1,300,000 km3 of extrusive lavas. However, these basalts have not been yet 264 
been genetically connected to the continental CAMP and it remains a possibility that their 265 
formation was a different event, possibly younger, and possibly associated with the onset of 266 
seafloor spreading (Benson, 2003). 267 

Whole-rock analyses of dykes, sills, and lavas of the CAMP tend to fall into three chemical 268 
groups, as outlined in McHone (2000) and used by Salters et al. (2003). These groups are 269 
characterised based on average values of TiO2: 0.62 % (low, or LTi), 1.26 % (intermediate, or 270 
ITi), and 3.21 % (high, or HTi), and other components such as magnesium, nickel, and various 271 
element ratios. All are tholeiites, with the LTi group mostly olivine normative, and ITi and HTi 272 
groups mostly quartz normative. As expected, phenocrysts of olivine tend to be abundant in 273 



 

 

the LTi dykes and sills, while minor interstitial quartz can be found in many of the ITi and HTi 274 
dykes, as well as early olivine in the larger intrusions. 275 

There are also distinctions with respect to dyke swarm locations and orientations (Fig. 2). 276 
Dykes and sills of LTi basalt are nearly all found in basins and NW-trending dyke swarms in 277 
the SE USA, whereas most of the HTi dykes are on the margins of South America and Africa 278 
that were adjacent before rifting. They also tend to be in NW-SE trending dykes. LTi and HTi 279 
magmas are apparently not represented among the remnants of surface flows within the CAMP. 280 
The ITi dykes and sills are joined by large basalt flows preserved in rift basins of eastern North 281 
America and NW Africa. In those basin areas, the ITi dykes tend to trend NE-SW, but this 282 
group is very widespread and also has N-S dykes and other trends in other areas around the 283 
CAMP (Fig. 2). 284 

Several localities in the SE USA show ITi dykes crosscutting LTi sills and dykes (Ragland et 285 
al., 1983) that are overall temporally overlapping/coeval (~201 Ma) with only minor variations 286 
(<0.5 Ma) (Hames et al., 2000; Blackburn et al., 2013). High-precision dates suggest about 287 
570,000 years between the earliest and latest basin basalts (Olsen et al,. 2003), based on basin 288 
stratigraphy correlated with Milankovitch climatic cycles. The Triassic-Jurassic boundary 289 
occurs above the oldest ITi basalts in eastern North America (Cirilli et al., 2009), but the end-290 
Triassic extinction horizon is still defined a meter or so beneath the oldest basin basalt (Olsen 291 
et al., 2003). Older basalts and large sills (Davies et al., 2017) exist in Morocco (Deenen et al., 292 
2010) that precede the end-Triassic mass extinction for which it is now generally recognised 293 
that the CAMP is the prime causal candidate (Blackburn et al., 2013). The petrological diversity 294 
of CAMP basalts thus suggests considerable mantle-source heterogeneity and lithospheric 295 
influence on the magmas (Section 3.5). 296 

3.3 Timing of Rifting and Magmatism 297 

Although CAMP magmatism occurred in extremely intense but relatively brief episodes 298 
around 201 Ma, the tectonic activity that led to the breakup of Pangaea was much more 299 
prolonged (Frizon De Lamotte et al., 2015; Keppie, 2016). The oldest rift basin sediments 300 
around the central Atlantic are early Carnian (Late Triassic), possibly older than 230 Ma 301 
(Olsen, 1997). In the SE USA, rifting ended before CAMP magmatism, such that sediments 302 
and basalts are spread across wide areas rather than being controlled by subsiding basins 303 
(Schlische et al., 2003). Seismic reflection data suggests that younger Cretaceous strata are 304 
deposited directly upon the CAMP lava plains (McBride et al., 1989). In the NE rift basins, 305 
thick Early Jurassic sediments overlie basalts (Olsen, 1997), showing that rifting continued for 306 
5 to 10 Myrs or more after the youngest CAMP flows, ceasing by the early Middle Jurassic 307 
(Schlische et al., 2003). This diachronous rifting was once thought to correspond to the changes 308 
in dyke orientations from south to north in eastern North America, but it is now known that the 309 
dyke magmas were roughly coeval. 310 

The actual age of continental separation and production of the new ocean is uncertain and needs 311 
further research. It is generally assumed, and supported by seismic interpretation (Kelemen and 312 
Holbrook, 1995), that eruption of the thick seaward-dipping volcanic wedge along the eastern 313 
continental margin of North America immediately preceded the formation of Atlantic Ocean 314 



 

 

crust. However, the oldest drift sediments along the western Atlantic margin appear to be 179 315 
to 190 Ma (Benson, 2003), or about the age of the youngest post-CAMP rift basin strata. There 316 
may thus be a 10-Myr gap between cessation of CAMP magmatism and seaward-dipping 317 
wedge magmatism and formation of new ocean crust. 318 

3.4 Kinematics of the Central Atlantic rift – implications for breakup 319 

Early Mesozoic dykes in eastern North America and NW Africa have been proposed to radiate 320 
from a central area at the Blake Plateau, near the modern-day Bahamas (May, 1971). This led 321 
to a model in which a deeply rooted thermal anomaly produced not only the dykes and basalts 322 
(Morgan, 1983) but also caused the rifting of Pangaea and the opening of the Central Atlantic 323 
Ocean (Storey et al., 2001). This model has been challenged by numerous previous workers 324 
(e.g., McHone, 2000). 325 

McHone (2000) argued that the circum-Atlantic dykes are oriented parallel to segments of 326 
adjacent central Atlantic rifted margins (Fig. 2), and are not radial even within sets of regional 327 
dykes such as in the SE USA. Moreover, volcanic seamounts and islands of the Atlantic are 328 
much younger than breakup, so there is no volcanic plume track from the proposed centre 329 
evident, as would be required for such a mechanism (Pe-Piper et al., 1992; Pe-Piper et al., 330 
2013). As described above, rifting that eventually opened the Central Atlantic started > 30 Myr 331 
before the magmatism, and the rift basins continued to develop for about another 10 Myr before 332 
tectonic activity shifted to the new ocean margins (Olsen, 1997). Thus, rifting was not 333 
contemporaneous with the massive production of CAMP basalts as expected for triggering by 334 
the arrival of a plume head. 335 

Weigand and Ragland (1970) ascribed the chemical variations of the CAMP basalts to crystal 336 
fractionation within lithospheric magma chambers. However, it does not appear that all of the 337 
chemical variations observed in the CAMP magmas can be derived through differentiation or 338 
contamination of a common mantle melt (Salters et al., 2003). The upper mantle has substantial 339 
mineralogical, chemical, and temperature variations, or heterogeneous zones, which also 340 
influence composition (Shellnutt et al., 2017). The petrological diversity does not, however, 341 
support a model of a narrow mantle plume source (Tollo and Gottfried, 1989). 342 

Components from crustal rocks that were subducted in much older plate collision events 343 
characterise most CAMP basalts (Merle et al., 2013; Puffer, 2001; Pegram, 1990). CAMP 344 
magmas are clearly derived from different compositions of sub-lithospheric mantle, some with 345 
substantial subduction contamination, in specific regions and across large geographic areas 346 
unrelated to any single centre. A preferred model for producing the CAMP is by the tectonic 347 
release of mantle melts that formed in a mantle warmed as a result of thermal insulation beneath 348 
the vast Pangaean supercontinent (Anderson, 1994; Merle et al. 2013). However, results of 349 
numerical models suggest that continental insulation is not the primary influence of 350 
supercontinents on mantle temperature (Heron and Lowman, 2010; 2014). 351 

4.0 The breakup of East and West Gondwana 352 

Breakup of East and West Gondwana during Early Jurassic times marked the end of the 353 
Gondwana supercontinent (Veevers, 2004; Klimke and Franke, 2016; Phethean et al., 2016) 354 



 

 

(Fig. 3). Along the central region of the Gondwana rift, two oceanic basins record the tectono-355 
magmatic history of the breakup. These are the West Somali Basin, from southern Somalia to 356 
northern Mozambique, and further south the Mozambique Basin, which is conjugate to the 357 
Riiser Larsen Sea/Lazarev Sea, Antarctica. Breakup followed a prolonged phase of episodic 358 
activity along the Karoo rift system and was closely contemporaneous with the eruption of the 359 
Karoo-Ferrar flood basalts and formation of the Lebombo volcanic monocline in Mozambique. 360 
Here, we discuss the spatio-temporal significance of tectonic and magmatic events, and their 361 
possible influence on breakup. 362 

4.1 Overview East and West Gondwana rifting and breakup 363 

Prior to the Middle Jurassic breakup of East and West Gondwana, tectonic activity along the 364 
Southern Trans-Africa Shear System, and much of the future line of continental separation in 365 
East Africa, had been underway since the Early Permian (Macgregor, 2018). Rifting associated 366 
with this early tectonism led to deposition of Karoo sediments along NW-SE and NE-SW 367 
trending basins during three main phases:  368 

1) Extension between ~300 Ma and ~265 Ma along NW-SE trending basins and 369 
sinistral strike-slip along NE-SW trending basins resulted in sedimentation of rifts and 370 
local deposition within left-lateral step-over basins, respectively (e.g., Hankel, 1994).  371 

2) A reconfiguration of the rift system occurred between ~259 and ~264 Ma with the 372 
onset of extension and rapid subsidence in NE-SW trending basins (Schandelmeier et 373 
al., 2004). Strike-slip deformation occurred along formerly extensional NW-SE 374 
trending basins (Delvaux, 2001). 375 

3) Following the final episode, a brief pause in rifting occurred across most basins 376 
between ~249 to ~242 Ma (e.g., Hankel, 1994; Geiger et al., 2004; Frizon De Lamotte 377 
et al., 2015). This was followed by rejuvenation of rifting along NE-SW trending rifts 378 
(Schandelmeier et al., 2004), and little activity along NW-SE trending rifts (Delvaux, 379 
2001). This rifting episode lasted until ~209 Ma (e.g., Hankel, 1994). 380 

Deposition of Karoo supergroup sediments during these rifting phases was contemporaneous 381 
with development of the Cape Fold Belt in South Africa between 220 and 290 Ma (Frimmel et 382 
al., 2001). A link has been suggested between episodic development of the Karoo rift system 383 
(e.g., Hankel, 1994; Schandelmeier et al., 2004; Reeves et al., 2016) and compression across 384 
the Cape Fold Belt (Delvaux, 2001) which reactivated pre-existing basement weaknesses along 385 
the northern parts of the Karoo rift system (Reeves, 2014).  386 

A long period of inactivity along the rift system then followed from ~209 Ma to ~183 Ma, after 387 
which many branches of the Karoo rift system along the line of future Gondwana separation 388 
reactivated in the Early Jurassic (~183 Ma) (Hankel, 1994; Papini and Benvenuti, 2008; Frizon 389 
De Lamotte et al., 2015). North of southern Tanzania, and south of northern Mozambique, 390 
Jurassic rifting overprints earlier Karoo rifts (Hunegnaw et al., 2007; Kassim et al., 2002; 391 
Catuneanu et al., 2005; Macgregor, 2018). The line of Jurassic continental breakup from 392 
southern Tanzania through northern Mozambique, however, shows little evidence of following 393 
an earlier Karoo rift system (e.g., Macgregor, 2018) and displays very different configurations 394 



 

 

(Frizon De Lamotte et al., 2015). The distinct Jurassic rifting episode is clearly seen in 395 
southwestern Madagascar and southeast Tanzania (Geiger et al., 2004), where new half-396 
grabens developed that crosscut Karoo rift structures and are filled by divergent wedges of 397 
Toarcian (Early Jurassic) syn-rift marine shales (Balduzzi et al., 1992; Macgregor, 2018).  398 

4.2 Rifting and magmatism 399 

The Jurassic rifting episode led to the final breakup of East and West Gondwana and was 400 
contemporaneous with major magmatism (Fig. 3). The Karoo LIP is primarily composed of 401 
the triple junction forming the Lebombo Monocline, the Okavango Dyke Swarm, and the Save-402 
Limpopo Dyke Swarm centred on Mwenezi, Mozambique (e.g., Hastie et al., 2014). Other 403 
dyke swarms, sills, and significant flood basalts are preserved in Botswana and South Africa 404 
(Jourdan et al., 2005). The inner Explora Wedge and Ferrar LIP (ca. 183.6 ± 1 Ma; Encarnación 405 
et al., 1996) forms the Antarctic counterpart of the Karoo LIP. 406 

The Lebombo Monocline may form part of the volcanic rifted margin of Mozambique and 407 
continental breakup is thought to have occurred along it (Klausen, 2009; Gaina et al., 2013). 408 
The monocline comprises progressively rotated dykes and seaward dipping lava flows, which 409 
are laterally segmented by scissor faults. This structure shows similarities to the North Atlantic 410 
volcanic rifted margins, and field relationships suggest that early tectonic extension became 411 
rapidly overwhelmed by dyke dialation (Klausen, 2009). As such, the Lebombo and Mwenezi 412 
volcanics may be the equivalent of SDR sequences (e.g., Davison and Steel, 2018), although 413 
the final location of continental breakup is still currently unresolved (e.g. Klausen, 2009). 414 

To the east of the monocline, the Mozambique Plain is underlain by Mesozoic volcanics and 415 
basalts have been drilled in the Domo-1 well 300 km east of the Lebombo Monocline (e.g., 416 
Davison and Steel, 2018). However, it is uncertain if continental crust underlies these lavas. 417 
The final line of breakup may therefore have passed through Mwenezi, or failed here and 418 
instead passed around the Mozambique Plain. The Lebombo Monocline was formed over a 419 
long period of ~10 Ma (e.g., Jourdan et al., 2007; Hastie et al., 2014; Riley and Knight, 2001) 420 
from ~184 Ma to 174 Ma, with peak activity between 183-178 Ma (Hastie et al., 2014). This 421 
is ~3 Myrs earlier than the counterpart Ferrar magmatism on the conjugate Antarctica margin 422 
(Riley and Knight, 2001).  423 

Lateral magma flow within the Lebombo Monocline and Okavango Dyke swarm is consistent 424 
with a magma source at the nearby Mwenezi triple junction (Hastie et al., 2014). However, the 425 
significant magmatism away from the Mwenezi triple junction, which additionally shows 426 
magma flow directions inconsistent with a Mwenezi origin, suggest additional sources of 427 
magmatism away from the triple junction (Hastie et al., 2014). The triple junction’s NE branch, 428 
the 070° trending Save-Limpopo dyke swarm, was under orthogonal NNW-SSE extension 429 
during its intrusion (Le Gall et al., 2005). In addition, it has been demonstrated that the NW 430 
branch, the 110° trending Okavango Dyke Swarm, opened with transtensional dyke intrusion 431 
and was also under the same NNW-SSE stress field. Thus, the triple junction structure did not 432 
result from active extensional forces radiating from Mwenezi (Le Gall et al., 2005). The 433 
magmatism instead followed pre-existing lithospheric structures, in this case alongside an ESE-434 
trending Proterozoic dyke swarm.  435 



 

 

Approximately 10% of dykes in the Okavango swarm are Proterozoic, whilst the remaining 436 
90% are Jurassic. Dykes of both ages show a strong geochemical affinity to each other, leading 437 
Jourdan et al. (2009) to suggest that both magmatic episodes were sourced from an enriched 438 
shallow mantle lithospheric source. Variations in magma composition in the Karoo LIP 439 
between low- and high-Ti magmas correlate with Proterozoic and Archean basement 440 
(Hawkesworth et al., 1999). Luttinen (2018) proposed an alternative bilateral division of 441 
magmas, into subduction and plume-related geochemical affinities, based on relative Nb 442 
abundance. There is no evidence for concurrent uplift during magma emplacement (Watkeys, 443 
2002), and magmas young progressively from south to north (Jourdan et al., 2005), i.e. towards 444 
the Mwenezi triple junction.  445 

Breakup-related volcanics at the continental margins of the Mozambique Basin, and its 446 
conjugates, the Lazarev Sea and the Riiser-Larsen Sea in Antarctica, comprise SDRs and high-447 
velocity lower crustal bodies (Hinz et al., 2004; Leinweber and Jokat, 2012; Mahanjane, 2012; 448 
Mueller and Jokat, 2017). However, the volcanics terminate before the Mozambique Strait 449 
between Madagascar and Mozambique (Klimke et al., 2018). In the West Somali Basin to the 450 
north, there is little evidence for magmatism during the breakup and the basin is thought to be 451 
magma-poor (Coffin et al., 1986; Klimke and Franke, 2016; Phethean et al., 2016; Stanton et 452 
al., 2016; Stanca et al., 2016). 453 

Despite the many plate kinematic models of breakup of Gondwana along the East African 454 
margin (Rabinowitz et al., 1983; Cox, 1992; Reeves et al., 2004; Eagles and König, 2008; 455 
Leinweber and Jokat, 2012; Gaina et al., 2013; Nguyen et al., 2016; Phethean et al., 2016; 456 
Davis et al., 2016; Reeves et al., 2016), the exact ages of formation of the West Somali and 457 
Mozambique basins are still poorly constrained. This is mainly because, if present, the earliest 458 
oceanic crust formed during the Jurassic Magnetic Quiet zone, where rapid polarity changes in 459 
the Earth’s magnetic field resulted in seafloor spreading anomalies that are difficult to detect 460 
(Tominaga et al., 2008). The extinct spreading axis has been tentatively identified using gravity 461 
data from the West Somali Basin (Sauter et al., 2016; Davis et al., 2016; Phethean et al., 2016) 462 
but the identification of seafloor-spreading-related magnetic anomalies are still an active area 463 
of research.  464 

In the West Somali Basin, Davis et al. (2016) identified magnetic anomalies as old as M24Bn 465 
(152.43 Ma). Gaina et al. (2013) suggest magnetic anomaly M40ny/M41 (~166 Ma) is the 466 
oldest and M2 (~127 Ma) is the youngest magnetic anomaly in the West Somali Basin, 467 
extending shorter periods suggested by Rabinowitz et al. (1983) (M10-M25; ~155 Ma to 134 468 
Ma) and Segoufin and Patriat (1980) (M0-M21; ~147 Ma to 124 Ma). In addition, the 469 
stratigraphic record from the basin shows an overwhelming to marine sedimentation in the 470 
Early Bajocian at around 170 Ma (Coffin and Rabinowitz, 1992), in agreement with a breakup 471 
unconformity in the Morondava Basin at this time (Geiger et al., 2004). 472 

Using new geophysical data Mueller and Jokat (2017) and Leinweber and Jokat (2012) 473 
tentatively identify M38n.2n or M41n (~164 or 165 Ma) as the oldest magnetic anomaly in the 474 
Mozambique Basin, extending earlier-identified seafloor-spreading anomalies M2 to M22 475 
(~148-127 Ma; Segoufin, 1978; Simpson et al., 1979). However, in the conjugate Riiser-Larsen 476 
Sea, the oldest magnetic anomaly identified so far is M25n (~154 Ma) (Leitchenkov et al., 477 



 

 

2008; Leinweber and Jokat, 2012). The Rooi Rand dyke swarm of the southern Lebombo 478 
Monocline has E-MORB geochemical affinity, has been dated at ~173 Ma (Jourdan et al., 479 
2007a; Hastie et al., 2014). It is thought to reflect incipient breakup and early seafloor spreading 480 
in the southern Mozambique Basin. These records suggest that breakup in the Mozambique 481 
Basin occurred between ~173 Ma and 164.1 Ma, similar to the proposed age of breakup in the 482 
West Somali Basin of ~170-152 Ma (references in previous paragraph). 483 

4.3 Timing of rifting and magmatism 484 

The Karoo LIP erupted in Botswana and South Africa from 185 Ma to 178 Ma (Jourdan et al., 485 
2005). Magmatic ages within the Lebombo Monocline, and the Okavango and Save-Limpopo 486 
Dyke Swarms overlap each other significantly and lie in the range 183 Ma to 174 Ma (Hastie 487 
et al., 2014). If the onshore Lebombo Monocline is in fact a volcanic rifted margin, this would 488 
indicate a significant overlap in flood basalt generation and incipient lithospheric breakup of 489 
the Mozambique Basin. In view of the south-to-north age progression of the Karoo flood 490 
basalts and sills in Botswana and South Africa it is appropriate to compare magmatic ages from 491 
the flood basalts and volcanic margins from similar latitudes. Both the Northern Flood Basalt 492 
Province described by Jourdan et al. (2005) and the Northern Lebombo Dyke Swarm lie at 493 
approximately the same latitude, and were intruded between 182 Ma and 178 Ma (Hastie et al., 494 
2014). Advanced lithospheric extension along the volcanic rifted margin near the Northern 495 
Lebombo Dyke Swarm may therefore have already been already present at the time of 496 
latitudinally equivalent flood basalt eruption. If, however, the Lebombo Monocline is not the 497 
volcanic rifted continental margin, then it is apparent that the LIP volcanism has no spatial 498 
relationship with continental breakup that occurred about 200 km farther east. 499 

4.4 Kinematics of the East and West Gondwana breakup – implications for breakup 500 

While earlier studies proposed that the Mozambique Basin and West Somali Basin opened in 501 
a generally N-S direction, more recent plate tectonic reconstructions argue for an almost 502 
simultaneous opening of both basins in a NW-SE direction (e.g., Gaina et al., 2013; Klimke 503 
and Franke, 2016; Phethean et al., 2016; Reeves et al., 2016). This is supported by the stress 504 
configuration derived from dyke swarms of the Karoo LIP emplaced during the Jurassic rift 505 
phase (Le Gall et al., 2005). Several dyke swarms record a NNW-SSE initial opening direction 506 
during the Jurassic (Le Gall et al., 2005). 507 

NNW-SSE gravity lineaments related to spreading in proximity to the African coast have been 508 
identified within the Western Somali Basin, between Madagascar and Africa (Davis et al., 509 
2016; Phethean et al., 2016). This newly identified phase of NNW-SSE spreading lasted 510 
between ~170 Ma and ~153 Ma and is consistent with the initial NNW-SSE opening of the 511 
Mozambique Basin (Phethean et al., 2016). NNW-SSE spreading was superseded by N-S 512 
spreading from ~153 Ma following the passing of Madagascar beyond the continental 513 
lithosphere of Mozambique and development of the Davie Fracture Zone (Reeves, 2017) along 514 
which East Gondwana was transposed. 515 

Reeves et al. (2016) performed plate tectonic reconstruction and found initial NW-SE motion 516 
is required. The pole of rotation between East and West Gondwana during the early phase of 517 
separation (~183 Ma to ~153 Ma) lay ~2000 km west of the SW tip of present-day Africa. This 518 



 

 

pole location requires that extension rates across the Gondwana rift increase to the NE. As the 519 
time of breakup is primarily a function of cumulative extension across a rift, this would result 520 
in SW-propagating breakup between East and West Gondwana. Such a structural configuration 521 
is generally supported by the sedimentological record (Salman and Abdula, 1995) and would 522 
indicate that the rift propagated towards the Mwenezi triple junction.  523 

Understanding of the timing and kinematics of the Western Somali Basin, and to the south of 524 
this the Mozambique Basin and its conjugate the Riiser Larsen Sea/Lazarev Sea, Antarctica, is 525 
still incomplete. As a result it is difficult to derive a final and conclusive model about the 526 
relationship between the Jurassic breakup of East and West Gondwana, including the formation 527 
of the Mwenezi triple junction and the Karroo-Ferrar LIP. However, it is clear that the triple 528 
junction structure was not the result of active extensional forces radiating from Mwenezi, and 529 
magmatism instead followed pre-existing lithospheric structures. The massive magmatic 530 
extrusion that formed the Karoo-Ferrar LIP likely predates rifting but breakup and formation 531 
of the oceanic basins did not initiate close to the triple junction. It is therefore more likely that 532 
the rift and subsequent breakup migrated towards the triple junction. Nevertheless, work is still 533 
needed to fully understand the relationship between the Jurassic breakup of East and West 534 
Gondwana and the formation of the Mwenezi triple junction and the Karroo-Ferrar LIP. 535 

5.0 The opening of the South Atlantic  536 

In the Early Cretaceous, West Gondwana, a southern constituent of Pangaea, broke up to form 537 
South America and Africa with continuous spreading resulting in the sustained expansion of 538 
the South Atlantic Ocean (Rabinowitz and Labrecque, 1979; Ben-Avraham et al. (1997) 539 
Lawver et al., 1998; Jokat et al., 2003; Eagles 2007; Moulin et al., 2009; Lovecchio et al., 2018) 540 
(Fig. 4). The contemporaneous Paraná–Etendeka continental flood-basalt provinces in Brazil 541 
and Namibia, respectively, are frequently attributed to an Early Cretaceous Tristan da Cunha 542 
plume with the Walvis Ridge and Rio Grande Rise comprising plume tail magmatism (Morgan, 543 
1981; Peate, 1997). As discussed herein, there are significant spatial and temporal mismatches 544 
between the proposed plume and these structures. 545 

5.1 Overview of South Atlantic rifting and breakup 546 

Regardless of the remarkable geometrical fit between the rifted continental margins of South 547 
America and Africa (Fig. 4), systematically initially investigated by Wegener (1915) and by 548 
numerous workers since (e.g., Gladczenko et al., 1997; Granot and Dyment, 2015), both the 549 
rift and breakup phases were complex, with evidence of multiple stages of rifting (Lovecchio 550 
et al., 2018), and the possible influence of structural inheritance (Ben-Avraham et al., 1997; 551 
Salomon et al., 2015).  552 

Continental extension may have begun in isolated centres in South America during the Late 553 
Triassic (at about 210 Ma) when almost all parts of south and west Gondwana were affected 554 
by magmatism resulting in high heat flow (Macdonald et al., 2003). In addition to this Late 555 
Triassic to Early Jurassic rifting phase, there was a Middle Jurassic extensional phase lasting 556 
almost 40 Ma, from Valanginian to late Albian time (Early Cretaceous), that completed 557 
separation of Africa and South America to separate completely (Keeley and Light, 1993; 558 
Szatmari, 2000). The line of continental separation and the position of the principal failed rifts 559 



 

 

were controlled by the position of boundaries between different aged basement and the 560 
inheritance of basement structural grain (Macdonald et al., 2003). Breakup is reasonably well 561 
understood but location and magnitude of continental intraplate deformation during rifting, 562 
particularly affecting South America, requires further work (see e.g. Eagles, 2007; Heine et al., 563 
2013; Moulin et al., 2009; Torsvik et al., 2009). 564 

5.2 Rifting and magmatism  565 

Continental breakup and initial seafloor spreading in the South Atlantic were accompanied by 566 
extensive transient magmatism as inferred from sill intrusions, flood basalt sequences, and 567 
voluminous volcanic wedges and high-velocity lower crust at the present continental margins. 568 
Voluminous volcanism affected both Mesozoic intracratonic basins onshore (Paraná-Etendeka 569 
flood-basalt province; Peate, 1997; Renne et al., 1992; Trumbull et al., 2007; Foulger, 2017) 570 
and the rifted crust offshore (Bauer et al., 2000; Franke et al., 2007; Gladczenko et al., 1997; 571 
Gladczenko et al., 1998; Hinz et al., 1999; Koopmann et al., 2014; Mohriak et al., 2008; Paton 572 
et al., 2016; Stica et al., 2014) (Fig. 4). 573 

Menzies et al. (2002) and Moulin et al. (2009) compiled published geochemical data and 574 
radiometric dates for the dykes and the lava flows of the Paraná–Etendeka flood-basalt 575 
provinces. According to these compilations, volcanic activity peaked in the late Hauterivian –576 
early Barremian (Early Cretaceous; 133-129 Ma, and 134–130 Ma, respectively). Apart from 577 
the age of the basalts, there is controversy about the source of Paraná–Etendeka magmas (see 578 
e.g. Renne et al., 1992; Peate, 1997; Hawkesworth et al., 1999; Trumbull et al., 2007; Rocha-579 
Júnior et al., 2013; Comin-Chiaramonti et al., 2011; Will et al., 2016; Foulger, 2017). 580 

The Early Cretaceous opening of the southern South Atlantic took place between 135 to 126 581 
Ma (Heine et al., 2013; Moulin et al., 2009; Macdonald et al., 2003; Rabinowitz and Labrecque, 582 
1979). Multichannel seismic and potential field data suggest the oldest magnetic chron in the 583 
southern South Atlantic related to oceanic spreading is M9 (ca. 135 Ma) Moulin et al., 2009). 584 
Older anomalies, previously identified as M11 (ca. 137 Ma), are found within the SDRs 585 
(Koopmann et al., 2016; Corner et al., 2002). There is still some uncertainty about the age of 586 
the first oceanic crust near the Falkland Plateau, where strike-slip deformation from the 587 
Falklands-Agulhas fracture zone hampers identification of the earliest spreading anomalies. 588 
Collier et al. (2017) and Hall et al. (2018) identified M10r (134.2 Ma, late Valanginian) as the 589 
oldest recognisable chron at the southern tip of the South Atlantic. This agrees with the 590 
suggestion of Becker et al. (2012) that the breakup unconformity, identified in rift basins at the 591 
northern edge of the Falkland plateau, is contemporaneous with the well-dated rift-to-sag 592 
unconformity in the North Falkland Basin. This indicates a Valanginian (~135 Ma; Early 593 
Cretaceous) age for the first oceanic crust in the southern South Atlantic.  594 

Most of the southern South Atlantic continental margins are volcanic (Gladczenko et al., 1997; 595 
Becker et al., 2014; Foulger, 2017) (Fig. 4). However, the southernmost 400-km-long portion 596 
lacks SDRs (Koopmann et al., 2014b; Becker et al., 2012; Franke et al., 2010; Hall et al., 2018). 597 
Thus, from the magnetic anomalies seaward of the SDRs, volcanic rifting onset abruptly, 598 
shortly before 137 Ma (Koopmann et al., 2016). From there towards the north, the progressive 599 
continental breakup was accompanied by large-scale transient magmatism with the formation 600 



 

 

of voluminous SDR wedges and high-velocity lower crustal bodies over the ~1800 km to the 601 
Florianopolis/Rio Grande fracture zones offshore Namibia/Brazil (Becker et al., 2014). The 602 
SDRs were emplaced consecutively northward, as indicated by the progressive termination of 603 
the pre-M4 magnetic seafloor spreading anomalies within the volcanic wedges. Only from 604 
magnetic chron M4 (ca. 130 Ma) onward was oceanic crust formed across the entire southern 605 
South Atlantic (Koopmann et al., 2016).  606 

Although magnetic anomalies from M4 (~130 Ma) onwards have been proposed for the central 607 
South Atlantic, north of the Florianopolis (or Rio Grande) fracture zone (Bird and Hall, 2016), 608 
most authors agree that breakup was delayed (by 10-20 Myr) across this fracture zone (Torsvik 609 
et al., 2009; Moulin et al., 2009; Quirk et al., 2013; Heine et al., 2013). At the latitude of the 610 
Paraná–Etendeka flood-basalt provinces, rift propagation was apparently blocked. At this 611 
position, one of the fundamental structures in the South Atlantic development (Moulin et al., 612 
2013), the Florianópolis (or Rio Grande) fracture zone, is found. This fracture zone hosted 613 
significant offset during breakup (150 km; Elliott et al., 2009). To its north, the central South 614 
Atlantic is characterised by minor SDRs which were deposited contemporaneously with Aptian 615 
salt deposits (Mohriak et al., 2008). A number of aborted rifts developed along the Brazilian 616 
margin (the Campos, Santos, and Esperito Santos Basins) and the crust was extremely stretched 617 
and thinned before the two spreading axes in the central and southern South Atlantic connected 618 
(Mohriak et al., 2002; Evain et al., 2015). 619 

Sporadic but widespread magmatic activity continued well after breakup (80 Ma and younger) 620 
in southern Africa and Brazil (Comin-Chiaramonti et al., 2011). This magmatism is most 621 
commonly manifest as alkaline intrusions, which are locally numerous (e.g., kimberlite fields) 622 
but smaller in volume than the Early Cretaceous activity. 623 

5.3 Timing of rifting and magmatism 624 

A key question is the relative timing of extension and emplacement of the large-volume 625 
magmatic flows, both onshore (Paraná–Etendeka flood-basalts) and offshore (SDRs). The best 626 
estimate currently available for the onset of rifting adjacent to the Walvis Ridge/Rio Grande 627 
Rise is about 134-135 Ma (Bradley, 2008; Moulin et al., 2009). This preceded surface breakup 628 
in the immediate vicinity. In both provinces, the basalts were deposited in north-south–trending 629 
rift basins, showing that rifting preceded flood volcanism, however (Clemson et al., 1997; Glen 630 
et al., 1997). The Paraná–Etendeka flood-basalts also erupted at the intersection of a major, 631 
activated, transverse extensional structure with the developing line of breakup (Foulger, 2017). 632 
Numerical modelling suggests that depth-dependent extension was underway for a 633 
considerable period before surface rupture. This is in line with the magma flow directions of 634 
both the basaltic rocks from the Etendeka igneous province of Namibia and from the Paraná 635 
province in Brazil.  636 

Magnetic seafloor spreading anomalies indicate that the peak magmatism (~132 Ma) of the 637 
Paraná–Etendeka flood-basalts postdates emplacement of SDRs in the southern South Atlantic 638 
(Koopmann et al., 2016). Only if the M-sequence geomagnetic polarity timescale is used 639 
(Malinverno et al., 2012), instead of the popular Gradstein and Ogg (2012) timescale, does 640 
dating suggest that the SDRs were emplaced simultaneously (Koopmann et al., 2016). As the 641 



 

 

SDRs mark the final stage of continental rifting it is evident that the complete extensional phase 642 
and likely also earliest seafloor spreading in the southern South Atlantic predate the 643 
emplacement of the Paraná and Etendeka basalts (Franke, 2013). 644 

5.4 Kinematics of the South Atlantic rift – implications for breakup 645 

The South Atlantic opened by south-to-north propagation (Gaina et al., 2013; Heine et al., 646 
2013; Seton et al., 2012; Moulin et al., 2009; Jokat, 2003; Macdonald et al., 2003; Austin and 647 
Uchupi, 1982; Rabinowitz and Labrecque, 1979) (Fig. 4). As pointed out by Franke (2013), 648 
this opening direction contradicts the hypothesis that rifting migrated away from the Paraná–649 
Etendeka flood-basalt provinces (Fig. 4). On the contrary, rifting migrated towards it, at odds 650 
with a model whereby continental breakup was triggered by an active upwelling mantle plume 651 
currently beneath the Tristan da Cunha hotspot. Other candidate mechanisms must therefore 652 
be sought as a trigger for breakup. 653 

When reconstructing the South Atlantic, the Cape fold belt in South Africa aligns with the 654 
Ventana (or Sierras Australes) Hills in Argentina. Paton et al. (2016) identify the South African 655 
Cape fold belt offshore South Africa and propose that initial rifting along western Gondwana 656 
was a consequence of extensional reactivation of the western Gondwanan Fold Belt (Fig. 4). 657 
The rift basins are thought to have formed through gravitational collapse of the fold belts such 658 
that rift basin geometry was controlled by underlying fold belt geometry. This resulted in 659 
broadly SW-orientated (with respect to Africa) extension in Argentina/South Africa. 660 
According to Paton et al. (2016), during the mid-Cretaceous, the rift configuration changed 661 
significantly and extension followed a north–south trend, i.e. perpendicular to the fold-belt. 662 
This geometry fits well with the proposed earlier clockwise rotation of extensional deformation 663 
throughout the Early Cretaceous based on structural data from the continental margins(Franke, 664 
2013).  665 

The highly asymmetric subequatorial margins of Brazil and West Africa almost certainly did 666 
not rift apart in a pure-shear fashion and simple-shear rifting mechanisms have been suggested 667 
(Mohriak et al., 2008). In addition, it has been suggested that the structure and shape of the 668 
continental margins show considerable deviations from symmetric structures expected from 669 
active rifting, triggered by a plume below the rift (Geoffroy, 2005; Campbell and Kerr, 2007). 670 
However, if there was a plume, the style and shape of breakup would still be governed or at 671 
least influenced by inherited lithospheric structures, so the margins could still have any kind of 672 
complexities, including asymmetry. With respect to volcanics, high-velocity lower crust, dyke 673 
orientations, and fault patterns, the complementary southern South Atlantic rifted margins 674 
experienced distinct asymmetric evolution during breakup (Salomon et al., 2017; Koopmann 675 
et al., 2016; Becker et al., 2016; Becker et al., 2014). The asymmetry in offshore magmatism 676 
with considerably more SDRs and volume of high-velocity lower crust on the African margin 677 
is surprising, given the opposite asymmetry in the onshore Paraná–Etendeka flood-basalt 678 
provinces. On the basis of fission-track and denudation studies on both margins, an explanation 679 
in greater post-rift uplift and erosion on the African margin has been ruled out (Becker et al., 680 
2014). Instead, South America offered more favourable structures for magma ascent and 681 
extrusion than South Africa. This supports mainly passive rifting as proposed earlier by 682 
Maslanyj et al. (1992). 683 



 

 

A seismic refraction study at the easternmost Walvis Ridge, including the junction with the 684 
Namibian coast, found a small intruded area around the Walvis Ridge (Fromm et al., 2015). 685 
Also onshore, in the landfall area of the Walvis Ridge at the Namibian coast, a narrow region 686 
(<100 km) of high-seismic-velocity anomalies in the middle and lower crust, interpreted as a 687 
massive mafic intrusion, has been identified by seismic reflection and refraction data (Ryberg 688 
et al., 2015). These data and observations are not particularly consistent with a broad thermal 689 
plume head beneath the opening South Atlantic.  690 

To the north of Walvis Ridge, the abrupt disappearance of SDRs (Elliott et al., 2009) 691 
accompanies a dramatic decrease in crustal thickness from 35 km below Walvis Ridge to 5–6 692 
km crust in the central South Atlantic (Fromm et al., 2015). A similar sudden disappearance of 693 
SDRs occurs south of a major transfer zone in the southern South Atlantic (Koopmann et al., 694 
2014b; Becker et al., 2012). These abrupt changes in magmatic volume are also inconsistent 695 
with a large-scale thermal source in the sublithospheric mantle as an origin for the magmatism. 696 
Gradual variations of mantle properties and dynamics are expected to generate smooth 697 
transitions over at least a hundred or a few hundreds of kilometres, not sharp transitions (Franke 698 
et al., 2010). 699 

In addition, the architecture of the SDRs implies an episodic emplacement with multiple 700 
magmatic phases alternating with magma-starved phases (Franke et al., 2010). The South 701 
Atlantic unzipped in jumps from south to north and the SDRs were emplaced consecutively 702 
along the successive northward propagating rift zones (Clemson et al., 1997; Franke et al., 703 
2007; Koopmann et al., 2014; Stica et al., 2014). Between the Falkland-Agulhas fracture zone 704 
and the Walvis Ridge/Rio Grande Rise (Fig. 4), this process lasted for approximately 5 Myrs 705 
as shown by the earliest magnetic chrons in the South Atlantic (Koopmann et al., 2016; Hall et 706 
al., 2018). 707 

6.0 Opening of the NE Atlantic, the Labrador Sea and Baffin Bay  708 

The northern North Atlantic realm contains two main spreading branches (Vogt and Avery, 709 
1974) (Fig. 5). The Labrador Sea – Baffin Bay system (here referred to as the NW Atlantic as 710 
in Abdelmalak et al., 2018) separated Greenland and North America (Vogt and Avery, 1974; 711 
Srivastava, 1978; Torsvik et al., 2002; Hosseinpour et al., 2013; Peace et al., 2016; Welford et 712 
al., 2018). Subsequently, the NE Atlantic began to open, separating Greenland and Europe 713 
(Talwani and Eldholm, 1977; Skogseid et al., 2000; Lundin and Doré, 2005b; Le Breton et al., 714 
2012; Gaina et al., 2009; Gernigon et al., 2015; Gaina et al., 2017a; Gaina et al., 2017b; Schiffer 715 
et al., 2018; Foulger et al. this volume). A complex junction exists between these branches to 716 
the north of the Charlie-Gibbs Fracture Zone (CGFZ) (Gaina et al., 2009) (Fig. 5). Switchover 717 
from the western spreading ridge to the eastern ridge was one of the most significant events in 718 
the evolution of the North Atlantic (Nielsen et al., 2007; Jones et al., 2017). Understanding the 719 
mechanisms that drove this switchover remains one of the most important unresolved questions 720 
in understanding North Atlantic tectonics (Peace et al., 2017a). 721 

In addition to these first-order spreading axes, Northeast Atlantic oceanic crust is further 722 
structurally divided in proximity to Iceland by the Kolbeinsey and Aegir ridges (Fig. 5). The 723 
genesis of Iceland, and the proximal Jan Mayen Microplate Complex (JMMC) still present 724 



 

 

unresolved questions (e.g., Müller et al., 2001; Foulger and Anderson, 2005; Gernigon et al., 725 
2015; Blischke et al., 2016; Schiffer et al., 2018b; Blischke et al., 2019; Schiffer et al. this 726 
volume). Regions where major extension occurred without breakup (i.e. failed rifts and 727 
transforms), must be accounted for in geodynamic models. These include the Davis Strait 728 
(Suckro et al., 2013; Peace et al., 2018b), the North Sea (Cowie et al., 2005), the Rockall Basin 729 
(Shannon et al., 1994; Roberts et al., 2018), and the Hatton Basin (Hitchen, 2004) and 730 
potentially also the Greenland-Iceland-Faeroes Ridge (GIFR) (Foulger et al. this volume). In 731 
addition, diffuse intracontinental deformation may also have been associated with breakup 732 
(e.g., the Eurekan Orogeny; Nielsen et al., 2007; Nielsen et al., 2014; Heron et al., 2015; 733 
Piepjohn et al., 2016; Schiffer and Stephenson, 2017; Gion et al., 2017; Stephenson et al. this 734 
volume). Although difficult to quantify, these events must be accounted for in models of the 735 
breakup of the North Atlantic (Ady and Whittaker, 2018). 736 

6.1 Overview of North Atlantic rifting and breakup 737 

Prior to breakup, the proto-North Atlantic region comprised an assemblage of Archaean and 738 
Proterozoic terranes (Kerr et al., 1996; St-Onge et al., 2009; Štolfová and Shannon, 2009; 739 
Engström and Klint, 2014; Grocott and McCaffrey, 2017; Schiffer et al. this volume). 740 
Understanding the pre-breakup extensional phases and orogenies is crucial to understanding 741 
Mesozoic-Cenozoic breakup because of the clear influence of structural inheritance (Dore et 742 
al., 1997; Schiffer et al., 2015; Peace et al., 2018a; Peace et al., 2018b; Schiffer et al., 2018a; 743 
Phillips et al., 2018; Rotevatn et al., 2018; Gernigon et al., 2018; Schiffer et al. this volume). 744 

Following the collision of Laurentia, Baltica and Avalonia in the Ordovician and Silurian 745 
(Roberts, 2003; Gee et al., 2008; Leslie et al., 2008), and subsequent gravitational extensional 746 
collapse (Dewey, 1988; Dunlap and Fossen, 1998; Rey et al., 2001; Fossen, 2010), the North 747 
Atlantic region may have experienced phases of lithospheric delamination and associated uplift 748 
for 30–40 Ma followed by a long period of rifting (Andersen et al., 1991; Dewey et al., 1993). 749 
The North Atlantic margins, including the Labrador Sea and Baffin Bay, experienced multiple 750 
phases of extension between the Devonian collapse of the Caledonian Orogen (Roberts, 2003) 751 
and early Cenozoic break-up (Srivastava, 1978; Doré et al., 1999; Lundin and Doré, 2018). 752 

Multiple pre-breakup rift phases are documented in the stratigraphic record of both the NE and 753 
NW Atlantic (Umpleby, 1979; McWhae et al., 1980; Srivastava, 1978; Lundin, 2002; Oakey 754 
and Chalmers, 2012; Barnett-Moore et al., 2016; Nirrengarten et al., 2018). Rifting started as 755 
early as the Permian, was widespread during the Triassic, and continued into the Jurassic 756 
Cretaceous, and Cenozoic (Umpleby, 1979; Stoker et al., 2016). In the NE Atlantic, an early 757 
rifting pulse from Late Permian to earliest Triassic is expressed regionally in the stratigraphic 758 
record. These Permian–Triassic successions record a northward transition from an arid interior 759 
setting to a passively subsiding mixed-carbonate siliciclastic shelf margin (Stoker et al., 2016). 760 
In the Early Jurassic, the sedimentary record shows thermal subsidence and mild extensional 761 
tectonism (Stoker et al., 2016). In the Late Jurassic, the stratigraphic record reveals an intense 762 
phase of rifting across most of the NE Atlantic. Cretaceous sections record predominantly 763 
marine strata deposition within broad zones of extension (Stoker et al., 2016). 764 



 

 

Following prolonged regional rifting (Larsen et al., 2009; Stoker et al., 2016), propagation of 765 
the Central Atlantic into the proto-North Atlantic began in Early Aptian time (e.g., Lundin, 766 
2002; Barnett-Moore et al., 2016). The propagating spreading centre produced the oldest 767 
oceanic crust of the North Atlantic and is marked by the M0 magnetic anomaly (121-125 Ma; 768 
Malinverno et al., 2012) offshore Iberia and Newfoundland (Lundin, 2002; Tucholke et al., 769 
2007; Eddy et al., 2017). By the Late Aptian (Early Cretaceous), spreading reached the Galicia 770 
Bank (Boillot and Malod, 1988). This was followed by formation of the Bay of Biscay triple 771 
junction in the Late Aptian or Early Albian (Early Cretaceous) where spreading continued until 772 
the Late Cretaceous (Williams, 1975). From the latest Cretaceous to the Eocene, however, the 773 
NW movement of Iberia with respect to Eurasia caused the Bay of Biscay to partly subduct 774 
beneath Iberia, forming the Pyrenees (Boillot and Malod, 1988). From the Bay of Biscay triple 775 
junction spreading propagated NW and reached the Goban Spur in Middle to Late Albian time 776 
(e.g., Tate, 1993). By the Santonian (Late Cretaceous), breakup had reached the Charlie Gibbs 777 
Fracture Zone (CGFZ) and significant extension, occurred in the Rockall Basin during the 778 
Cretaceous (Shannon et al., 1994; Hitchen, 2004).  779 

The NW Atlantic was the next region to open (Srivastava, 1978; Chalmers and Pulvertaft, 780 
2001; Lundin, 2002; Hosseinpour et al., 2013; Keen et al., 2017; Oakey and Chalmers, 2012; 781 
Abdelmalak et al., 2018; Welford et al., 2018). This extinct spreading system comprises the 782 
Labrador Sea in the south and Baffin Bay in the north (Fig. 5) (Chalmers and Pulvertaft, 2001). 783 
These are connected via the Ungava Fault Zone, a transform fault system running through the 784 
Davis Strait bathymetric high (Suckro et al., 2013; Peace et al., 2017a; Peace et al., 2018c). 785 
The Labrador Sea, Davis Strait and Baffin Bay formed via multiphase, divergent motion 786 
between Greenland and North America (e.g., Chalmers and Pulvertaft, 2001; Hosseinpour et 787 
al., 2013). Rifting prior to breakup occurred from at least the Early Cretaceous, but potentially 788 
as early as the Triassic according to dykes in southwest Greenland (Larsen et al., 2009; Secher 789 
et al., 2009) and, with some uncertainty, Labrador (Wilton et al., 2002; Tappe et al., 2006; 790 
Tappe et al., 2007; Wilton et al., 2016; Peace et al., 2016).  791 

Onset of spreading in the Labrador Sea is thought to have occurred in the Early Campanian 792 
(Chron 33; ca. 80 Ma) (Roest and Srivastava, 1989; Srivastava and Roest 1999). In contrast, 793 
Chalmers and Laursen (1995) propose that Chrons 33 and 27 represent transitional crust with 794 
true oceanic crust in the Labrador Sea first generated in the Palaeocene (Chron 27; ca. 62 795 
Ma). Keen et al. (2017), however, state that the ocean-continent boundary lies near magnetic 796 
anomaly Chron 31 (ca. 68 Ma), and divide the oceanic region into inner and outer domains, 797 
which merge near magnetic Chron 27 (ca. 62 Ma). The outer domain of Keen et al. (2017) is 798 
interpreted as steady-state seafloor spreading with well-developed linear magnetic anomalies, 799 
while the igneous crust of the older, inner domain is generally thinner, and more variable.  800 

During the separation of Greenland and North America, oceanic crust was not formed in the 801 
Davis Strait (Suckro et al., 2013; Peace et al., 2017b), in part because of the primarily strike-802 
slip nature (Wilson et al., 2006; Peace et al., 2018c). In Baffin Bay, oceanic spreading 803 
probably also occurred simultaneously with spreading in the Labrador Sea. This is, however, 804 
uncertain and oceanic crust there is undoubtedly more limited (Jackson et al., 1979; 805 
Hosseinpour et al., 2013). Regardless of the existence of older oceanic crust in the Labrador 806 



 

 

Sea, it is generally accepted that Early Eocene (Chron 24; ca. 54 Ma) oceanic crust floors 807 
Baffin Bay (e.g., Chalmers and Pulvertaft, 2001). 808 

Events in the NW Atlantic may be linked to changes in plate kinematics in the NE branch of 809 
the Atlantic (Gaina et al., 2009). During the Early Eocene (Chron 24; ca. 54 Ma), seafloor 810 
spreading began in the NE Atlantic, marking a major tectonic reorganisation (Lundin, 2002; 811 
Nielsen et al., 2007; Mosar et al., 2002; Gaina et al., 2016). The direction of spreading in the 812 
Labrador Sea and Baffin Bay system rotated to NNE-SSW (e.g., Abdelmalak et al., 2012; Peace 813 
et al., 2018a). This slowed seafloor spreading that was oblique to the earlier ridge system 814 
(Hosseinpour et al., 2013). A triple junction formed between the Labrador Sea, the NE Atlantic, 815 
and the southern North Atlantic, which was active until spreading ceased in the Labrador Sea 816 
in the earliest Oligocene (Chron 13; ca. 35 Ma) (e.g., Srivastava & Roest 1999). In the NE 817 
Atlantic, the abnormal thickness of the oceanic crust initially produced (ca. 54 Ma) decreased 818 
and a steady state was reached by the Middle Eocene (ca. 48 Ma) (Holbrook et al., 2001b; 819 
Lundin and Doré, 2005b; Storey et al., 2007; Mjelde and Faleide, 2009). By ca. 36-32 Ma, 820 
spreading had entirely relocated to the NE Atlantic (Roest and Srivastava, 1989; Barnett-Moore 821 
et al., 2016) and terminated along the Labrador Sea-Baffin Bay axis (Chalmers and Pulvertaft, 822 
2001). Greenland then became part of the North American plate (Oakey and Chalmers, 2012; 823 
Barnett-Moore et al., 2018). 824 

In the Norwegian Sea of the NE Atlantic, development of sea-floor spreading along the 825 
Reykjanes, Mohns, Ægir and Kolbeinsey ridges is relatively well understood (e.g., Lundin, 826 
2002; Gernigon et al., 2015; Blischke et al., 2016; Zastrozhnov et al., 2018). The Ægir Ridge 827 
may represent the southern tip of a southward-propagating Arctic rift system that migrated west 828 
to form the Kolbeinsey Ridge. This was a transitional process with delocalisation starting at 829 
~40 Ma and the Ægir Ridge becoming extinct sometime between ca. 21 and 28 Ma (e.g., 830 
Lundin, 2002). The overlapping geometry of the Ægir and Kolbeinsey Ridges was maintained 831 
during the subsequent sea-floor spreading (Müller et al., 2001; Schiffer et al., 2018). The 832 
Kolbeinsey Ridge linked with the Mohns Ridge, via the West Jan Mayen Fracture Zone in 833 
earliest Oligocene time (Chron 13; ~33 Ma) as indirectly dated by the eastern termination of 834 
the West Jan Mayen Fracture Zone, which reaches Chron 13 on the east side of the Mohns 835 
Ridge. This link made further spreading along the Ægir Ridge redundant and seafloor spreading 836 
ceased along the Ægir Ridge at approximately Chron 12 (Jung and Vogt, 1997). The link 837 
between the Kolbeinsey and Mohns ridges represents the linkage between the Arctic and 838 
Atlantic oceans (Lundin, 2002). 839 

6.2 Rifting and Magmatism 840 

Rifting and breakup of the northern North Atlantic was accompanied by significant, widespread 841 
magmatism (Eldholm and Grue, 1994; Mjelde et al., 2008; Hansen et al., 2009; Nelson et al., 842 
2015; Wilkinson et al., 2016; Á Horni et al., 2017; Clarke and Beutel, this volume) (Fig. 5). 843 
This was particularly abundant during and after breakup (Saunders et al., 1997; Hansen et al., 844 
2009; Wilkinson et al., 2016; Á Horni et al., 2017), although some magmatism also occurred 845 
during the preceding rifting (e.g., Larsen et al., 2009; Wilkinson et al., 2016). The continental 846 
passive margins of the southern North Atlantic (e.g. Newfoundland – Iberia and Labrador – 847 
southwest Greenland) are typically considered to be magma-poor (Chalmers, 1997; Chonian et 848 



 

 

al., 1995; Chalmers and Pulvertaft, 2001; Whitmarsh et al., 2001; Keen et al., 2017), whereas 849 
the margins further north (e.g., East Greenland, the NW European margin, and Central West 850 
Greenland) are considered to be ‘magma-rich’, and to contain SDRs and HVLCBs (Geoffroy 851 
et al., 2001; Breivik et al., 2012; Keen et al., 2012; Magee et al., 2016; Petersen and Schiffer, 852 
2016; Larsen et al., 2016).  853 

An early, coherent magmatic province in the North Atlantic realm was the Permo-854 
Carboniferous Skagerrak LIP found in southern Sweden and Norway, Denmark, northern-855 
central Europe and the British Isles (Heeremans et al., 2004; McCann et al., 2006). This igneous 856 
province was coeval with a general period of tectonic unrest and magmatic hyperactivity in 857 
Europe, possibly connected to the collapse of the Variscides that might have included extreme 858 
lithospheric thinning and delamination (Doblas et al., 1998; Timmerman et al., 2009; McCann 859 
et al., 2006; Meier et al., 2016). 860 

Pre-breakup magmatism, likely associated with lithospheric thinning and rifting, occurs across 861 
the North Atlantic region in disparate occurrences, typically as small-fraction melts from the 862 
Late Triassic to the Cretaceous (Helwig et al., 1974; King and McMillan, 1975; Tappe et al., 863 
2007; Larsen et al., 2009; Peace et al., 2016; Peace et al., 2018c; Peace et al., 2018d). These 864 
igneous rocks do not comprise a coherent magmatic province, but rather small-volume, 865 
distributed melts (e.g., lamprophyre dykes in West Greenland and Newfoundland; Helwig et 866 
al., 1974; Larsen et al., 2009). They demonstrate that significant lithospheric extension was 867 
likely widespread across the proto-North Atlantic region as far back as the Late Triassic 868 
(Larsen et al., 2009). 869 

During and after breakup, widespread magmatism formed the North Atlantic Igneous Province 870 
(NAIP) (White, 1988; Upton, 1988; Saunders et al., 1997; Meyer et al., 2007; Storey et al., 871 
2007; Hansen et al., 2009; Wilkinson et al., 2016; Á Horni et al., 2017). The NAIP is a classic 872 
LIP (Bryan and Ernst, 2008; Hansen et al., 2009) that comprises the voluminous Palaeogene 873 
igneous rocks of the East Greenland margin (Tegner et al., 1998), NW European margin 874 
(Melankholina, 2008), and JMMC (Breivik et al., 2012). To the west of Greenland, in the Davis 875 
Strait and on Baffin Island, other Palaeogene igneous rocks contribute to the NAIP (Clarke and 876 
Upton, 1971; Upton, 1988; Tegner et al., 2008; Hansen et al., 2009; Gaina et al., 2009; Nelson 877 
et al., 2015; Clarke and Beutel, this volume). 878 

Distribution of NAIP volcanism is highly asymmetric between conjugate margins and the more 879 
magmatic margins may be associated with thicker lithosphere (Á Horni et al., 2017). 880 
Significantly more volcanism occurs south of the GIFR than to the north (Schiffer et al., 2015; 881 
Á Horni et al., 2017). Petrologically, NAIP igneous rocks are highly diverse and include 882 
tholeiitic and alkali basalts, nepheline- and quartz-syenites, nephelinites, and carbonatites 883 
(Holbrook et al., 2001). NAIP igneous rocks are also highly variable in structure and include 884 
dykes, and sills (Magee et al., 2014), seaward-dipping reflectors (SDRs) (Larsen and Saunders, 885 
1998), high-velocity lower crustal bodies (Funck et al., 2007), seamounts (Jones et al., 1974), 886 
and subaerial flows (Wilkinson et al., 2016; Á Horni et al., 2017).  887 

Although the NAIP is often considered to comprise all pre-, syn- and post-breakup magmas, 888 
some are not generally included. For example, the Vestbakken Volcanic Province, and its 889 



 

 

conjugate equivalent in NE Greenland, have been attributed to local tectonic processes  890 
associated with shear margin development and are generally not considered part of the NAIP 891 
(Hansen et al., 2009; Á Horni et al., 2017). Significant magmatism is detected by seismic 892 
reflection, gravity and magnetic surveys near the western termination of the Charlie-Gibbs 893 
Fracture Zone (CGFZ) in the form of multiple flows and seamounts that are not typically 894 
considered part of NAIP (Pe-Piper et al., 2013; Keen et al., 2014). The basaltic ‘U-reflector’ 895 
sills offshore Newfoundland, which cover an area of c. 20,000 km2, are also excluded from the 896 
NAIP (Karner and Shillington, 2005; Hart and Blusztajn, 2006; Deemer et al., 2010; Peace et 897 
al., 2017b). The logic of inclusion or exclusion of magmatism under the umbrella term NAIP 898 
becomes increasingly unclear when it is noted that the Cretaceous-aged Anton Dohrn and 899 
Rockall seamounts are considered to belong to NAIP (Hitchen et al., 1995; Morton et al., 1995). 900 
This casts doubt on the rationale behind inclusion of igneous rocks in the NAIP and has 901 
implications for the extent, timing, magmatic budget and duration of NAIP, which in turn affect 902 
models for the tectono-magmatic processes responsible for its development. Much previous 903 
work also associates this LIP with a unique geochemical signature, although it is, in fact, highly 904 
variable (Korenaga and Kelemen, 2000; Á Horni et al., 2017).  905 

The area of the NAIP has been estimated to be 1.3 × 106 km2, and its volume, which is 906 
problematic to assess, is suggested to have once been 5 - 10 × 106 km3 (Holbrook et al., 2001; 907 
Storey et al., 2007; Wilkinson et al., 2016). Holbrook et al. (2001) estimated that between 908 
breakup and magnetic Chron C23n, 107 km3 of igneous crust was produced. The West 909 
Greenland constituent of the NAIP (the West Greenland Volcanic Province; WGVP e.g., Gill 910 
et al., 1992) is estimated to cover 2.2 x 103 km2 in area (Clarke and Pedersen, 1976; Riisager et 911 
al., 2003).  912 

6.3 Timing of rifting and magmatism 913 

The NAIP is thought to have involved two main periods of melt emplacement: 1) ca. 62-58 Ma 914 
and 2) ca. 57-53 Ma, with distinct peaks in productivity at ca. 60 Ma and ca. 55 Ma (Hansen et 915 
al., 2009). Distinct parts of the NAIP were emplaced at different times (Lundin and Doré, 916 
2005b). For example the British volcanic province (BVP) and the WGVP are mostly Early 917 
Palaeocene whereas NE Atlantic magmatism is predominantly Early Eocene (Lundin and Doré, 918 
2005b). A unifying genetic model must account for this variable spatiotemporal distribution 919 
(Lundin and Doré, 2005b; Peace et al., 2017a).  920 

Petersen et al. (2018) recently proposed a mechanism to explain the two-phase igneous activity 921 
associated with the NAIP based on numerical modelling. They propose that lithospheric 922 
delamination triggered by destabilisation of thickened and metamorphosed, high-density lower 923 
crust produced the first igneous peak by small scale convection induced by detachment of the 924 
lithosphere. A second, much more voluminous phase of melting occurred when sinking 925 
lithospheric blocks penetrated the lower mantle and induced return flow. 926 

In summary, rifting and breakup of the North Atlantic region was accompanied by prolonged, 927 
variable and extensive magmatism, some of which is conventionally considered to be part of 928 
the NAIP and some of which is not. The distinction is apparently model-dependent, inviting 929 
reassessment of both model and categorisation of the magmas. 930 



 

 

6.4 Kinematics of the North Atlantic rift – implications for breakup 931 

The North Atlantic opened by south-to-north propagation from the Central Atlantic into the 932 
NW and NE Atlantic (Lundin, 2002; Barnett-Moore et al., 2018; Nirrengarten et al., 2018). 933 
This contradicts the hypothesis that rifting migrated away from the NAIP, including the WGVP 934 
(Lundin and Doré, 2005a; Peace et al., 2017a). On the contrary, rifting migrated towards it, at 935 
odds with a plume-driven continental breakup model (Foulger et al. this volume). 936 

There is little evidence for a time-progressive hotspot track (Lundin and Doré, 2005a) as 937 
predicted for a plume (Lawver and Müller, 1994; O’Neill et al., 2005; Doubrovine et al., 2012; 938 
Mordret, 2018). Although the GIFR is commonly viewed as a plume track there is no seamount 939 
chain to support this (Lundin and Doré, 2005b; Foulger et al. this volume). Similarly, in the 940 
West Greenland area, Peace et al. (2017a) note that evidence for a distinctive hotspot track 941 
associated with the WGVP is vague and poorly constrained, and that rifting and breakup do 942 
not follow the predicted path of the proposed plume (Lundin and Doré, 2005a). Additionally, 943 
in an idealised plume model, a deep-seated mantle plume would be required to precisely follow 944 
lithospheric breakup (e.g., Steinberger et al., 2018) for it to have remained beneath the active 945 
spreading plate boundary since inception (Lundin and Doré, 2005b). However, in reality a 946 
hypothetical mantle plume may deviate from the idealised model due to a number of processes 947 
such as shear flow (Richards and Griffiths, 1988) and deflection around cratonic keels (Sleep 948 
et al., 2002). 949 

As described above, extension and magmatism are widely documented prior to postulated 950 
plume arrival in the Early Cenozoic. Within the NAIP, the occurrence of significantly more 951 
volcanism south of the GIFR than to the north (Schiffer et al., 2015; Á Horni et al., 2017) is at 952 
odds with the radial distribution of magmatism predicted by in an idealised plume model. 953 

In summary, breakup of the North Atlantic was a complex, polyphase process, accompanied 954 
by highly compositionally variable magmatic events that require numerous ad hoc 955 
embellishments of a deep mantle plume impingement model. We it has been suggested that 956 
continental breakup and associated magmatism across the North Atlantic region was driven by 957 
lithospheric processes associated with plate tectonics (Lundin and Doré, 2005a; Lundin and 958 
Doré, 2005b; Ellis and Stoker, 2014; Schiffer et al., 2015; Peace et al., 2017a; Schiffer et al., 959 
2018b), and that mantle temperatures were likely only slightly, if at all, above ambient (Hole 960 
and Natland, this volume)  961 

7.0 Discussion  962 

Magmatism is mainly confined to active plate boundaries (i.e., spreading ridges and subduction 963 
zones) where plate tectonic processes are indisputably responsible (Kearey et al., 2009). It has 964 
been suggested that the same holds true for continental margins.  965 

It was realised early that the dominant force driving plate motion is slab-pull, which is probably 966 
an order of magnitude stronger than other forces (Forsyth and Uyeda, 1975). This is consistent 967 
with the observation that the speed with which plates move is related to the length of the 968 
subducting slab to which they are attached. Considerable work has been done subsequently to 969 
investigate this relationship, including study of the apparent east-west asymmetry in the global 970 



 

 

subduction slab system (Doglioni and Anderson, 2015) and the systematic westward migration 971 
of spreading ridges which imparts east-west asymmetry to the composition of the mantle 972 
(Chalot-Prat et al., 2017).  973 

In addition, new plate boundaries must, from time to time, be created because the constantly 974 
evolving configuration of plates results in periodic annihilation of plate boundaries and 975 
transmutation of others (e.g., subduction of the Farallon ridge and replacement of that 976 
subduction zone with the San Andreas transform system). Like all cracks in brittle material, 977 
extensional plate boundaries are most easily formed by propagation along pre-existing zones 978 
of weakness (Holdsworth et al., 2001). The most susceptible zones may well lie in the 979 
continental lithosphere, in particular if that lithosphere has been pre-weakened by a long history 980 
of tectonic deformation (Butler et al., 1997; Armitage et al., 2010; Audet and Bürgmann, 2011; 981 
Petersen and Schiffer, 2016; Peace et al., 2018a). The spatial scaling of lithospheric processes 982 
such as rifting and delamination, the heterogeneity of mantle composition (Foulger et al., 983 
2005a; Chalot-Prat et al., 2017) and the complexity of other influential factors such as structural 984 
inheritance can explain the great diversity observed along such boundaries (Petersen and 985 
Schiffer, 2016; Schiffer et al. this volume). The plate-driven rifting models suggests that 986 
continental breakup is initiated by extensional forces, accompanied by rift-shoulder uplift, and 987 
magmatism is related to the passive upwelling of local, relatively shallow asthenosphere 988 
(Menzies et al., 2002). The extensional forces result from far-field plate-tectonic 989 
reorganisations (Geoffroy, 2005). 990 

Plume impingement models predict uplift, LIP-emplacement and rifting in rapid succession 991 
(White, 1988; Dam et al., 1998; Beniest et al., 2017; Steinberger et al., 2018). In such models, 992 
the bulk of the magmatic products are expected prior to and during the initial stages of rifting, 993 
shortly after plume impact. In an ideal, theoretical case, stress in the overriding plate should be 994 
concentric around the location of plume impact (Franke, 2013) and lithosphere fragmentation 995 
should be initially radial, possibly via multiple rifts, and possibly forming triple junctions 996 
(Ernst and Buchan, 1997). Rifting is expected to initiate at, and propagate away from, the point 997 
of plume impact and LIP magmatism (Camp and Ross, 2004; Franke, 2013; Peace et al., 998 
2017a). The regions we reviewed, associated with the Pangaea breakup, do not display these 999 
features. 1000 

7.1 Magmatism associated with Pangaea breakup 1001 

Emplacement of the CAMP LIP is the event traditionally associated with plume-driven models 1002 
for formation of the Central Atlantic (Wilson, 1997). A centre at the Blake Plateau, near the 1003 
modern-day Bahamas, has been proposed as the focus from which radiating rifts are expected 1004 
(May, 1971). However, detailed observations do not fit this idealised model (McHone, 2000). 1005 
Instead of post-dating and emanating from the CAMP LIP, continental rifting preceded it by 1006 
~30 Myr, started far to the south and propagated north where rifting continued for 5-10 Myrs 1007 
after CAMP volcanism ceased (Olsen, 1997). The spatial pattern of volcanism fails to match 1008 
the predictions. Circum-Atlantic dykes are mostly oriented parallel to adjacent segments of the 1009 
Central Atlantic rifted margins and a radial model has little support (McHone, 2000). Evidence 1010 
for a plume track is also lacking since small-volume volcanic features on the Central Atlantic 1011 



 

 

seafloor are much younger than CAMP volcanism, and may be entirely unrelated to CAMP 1012 
and breakup. 1013 

A model for breakup as the culmination of long-term continental tectonic instability (Keppie, 1014 
2016), with rifting controlled by reactivation of older structures (Pique and Laville, 1996), and 1015 
magmas tapped from the asthenosphere, explains the observations more easily (McHone, 1016 
2000). The Central Atlantic Ocean opened only after a protracted period of continental rifting 1017 
(Davison, 2005). The continental margins re-opened sutures that had experienced at least two 1018 
previous Wilson Cycles of suture and breakup, testifying to the controlling role of inheritance 1019 
of pre-existing structure (Schiffer et al. this volume). CAMP magmatism comprised a brief 1020 
phase of ~1 Myr of intense igneous productivity in the midst of a rifting event that lasted several 1021 
tens of Myr. Volcanic rates were briefly so massive that production cannot be accounted for by 1022 
any thermal-upwelling mechanism no matter how hot (Cordery et al., 1997). Furthermore, 1023 
magmas were so widespread, extending throughout a region > 5,000 km wide (Denyszyn et al., 1024 
2018) penetrating far into the South American and African continents, that they cannot be 1025 
attributed to a single source (McHone, 2003; Leleu et al., 2016). Instead, they require 1026 
widespread lithospheric instability. The petrological diversity of CAMP lavas also cannot be 1027 
explained by a single source but requires considerable mantle-source heterogeneity, possibly 1028 
from recycled subducted slabs (Tollo and Gottfried, 1989). 1029 

Less information is available from the Western Somali and Mozambique basins which record 1030 
the breakup of East and West Gondwana (Phethean et al., 2016). More detail needs to be known 1031 
about the chronological relationships between tectonism and volcanism in the Mwenezi triple 1032 
junction and Karoo rift and LIP in order to fully test the plume- and plate-driven hypotheses. 1033 
It is clear, however, that in keeping with observations elsewhere, tectonic unrest was ongoing, 1034 
with occasional phases of inactivity, in the region since the Early Permian, over 100 Myr before 1035 
Jurassic breakup (Macgregor, 2018). Thus, the structures along which breakup-related 1036 
magmatism occurred predated breakup by many millions of years. For example, many of the 1037 
dykes in the Okavango swarm were formed in the Proterozoic, and share geochemical affinities 1038 
with the Mesozoic breakup-related intrusives. This suggests a long-lived volcanic lithospheric 1039 
feature and source since the region must have moved relative to the deeper mantle in the interim 1040 
period. Evidence for extensive lateral flow of magmas at the time of breakup testifies to 1041 
distributed sources rather than a single centre, e.g., at the Mwenezi triple junction. Furthermore, 1042 
breakup and formation of the ocean basins did not radiate from the Mwenezi triple junction. 1043 
Instead the evidence available suggests instead that breakup-related rifting migrated towards 1044 
the triple junction. The close proximity of volcanic margins with SDRs and magma-poor 1045 
margins is incompatible with a single, large-scale source. 1046 

Considerably more is known about the opening of the South Atlantic and the chronology and 1047 
composition of lavas of the Parana-Etendeka LIP (Foulger, 2017). This region is associated 1048 
with the Cretaceous disintegration of West Gondwana and it exhibits extensive volcanic 1049 
margins and SDRs (Franke et al., 2010). In plume models, the large, well-studied Paraná–1050 
Etendeka LIP in Brazil and Namibia is attributed to the head of a plume currently beneath 1051 
Tristan da Cunha (Peate, 1997).  1052 



 

 

Since the proposal that South Atlantic breakup was plume-driven, a great deal of new and 1053 
detailed information has accumulated from numerous marine geophysical experiments (Franke 1054 
et al., 2007; Franke et al., 2010; Foulger, 2017). In addition, the structure and geochemistry of 1055 
Paraná–Etendeka LIP lavas and postulated ‘plume tail’ volcanics on the Rio Grande- and 1056 
Walvis ridges have been critically examined. Major chronological and spatial mismatches with 1057 
the plume-driven breakup model have emerged. Rifting onset occurred long before the Paraná–1058 
Etendeka LIP was emplaced at ~132 Ma. Seafloor spreading in the southern South Atlantic in 1059 
the Valanginian, at ~135 Ma and propagated northward in jumps, with brief hiatuses where the 1060 
developing rift encountered barriers. Major volcanic margins were built, and thus breakup and 1061 
large-scale magmatism was already well underway when the Paraná–Etendeka LIP was 1062 
emplaced, at odds with the plume-driven breakup model. The rift unambiguously propagated 1063 
toward the future location of the LIP, not away from it (Foulger, 2017). 1064 

Paraná lavas were emplaced in north-south-trending rift basins, testifying to ongoing extension 1065 
prior to LIP emplacement. They erupted at the location of a major cross-cutting transverse 1066 
lineament (Foulger, 2017), exploiting pre-existing structure. Of all continental LIPs, the 1067 
geochemistry of the Paraná–Etendeka LIP is also perhaps the least equivocal that the lavas 1068 
were derived from melted lithospheric mantle. In addition, recent detailed seismic surveys, 1069 
both of the breakup margins and the African coastal part of the Walvis Ridge, show that 1070 
spatially abrupt changes in magma volume are widespread (Franke et al., 2010).  1071 

The complex history of North Atlantic breakup and magmatism has been studied intensely for 1072 
many decades, and is known in detail (Clarke and Upton, 1971; Srivastava and Roest, 1999; 1073 
Hansen et al., 2009; Larsen et al., 2009; Nirrengarten et al., 2018; Schiffer et al. this volume; 1074 
Hole and Natland, this volume). Volcanism has been widespread since the region initially 1075 
began rifting in the Early Jurassic (or possibly Late Triassic; Larsen et al., 2009) followed by 1076 
opening of the Labrador Sea (Chalmers and Pulvertaft, 2001). Early, relatively small-volume 1077 
volcanism (Peace et al., 2018c) gave way to emplacement of massive volcanic margins with 1078 
SDRs when spreading was transferred to the current NE Atlantic (Eldholm and Grue, 1994; 1079 
Wilkinson et al., 2016). 1080 

Several magmatic events have been attributed to an Icelandic plume head, including the 1081 
Siberian Traps (~251 Ma), volcanism in the Davis Strait (~62 Ma) (Gerlings et al., 2009) and 1082 
widespread magmatism at the time of opening of the NE Atlantic Ocean (~54 Ma) (Steinberger 1083 
et al., 2018). The latter two events accompanied lithospheric breakup and there is no evidence 1084 
of a chronology of uplift followed by LIP volcanism and subsequent continental rifting 1085 
(Foulger and Anderson, 2005; Peace et al., 2017a). On the contrary, tectonic unrest, continental 1086 
extension and small-volume volcanism for several 100 Myr prior to breakup is well-1087 
documented in Laurasia prior to breakup (Tappe et al., 2007; Larsen et al., 2009; Peace et al., 1088 
2016; Peace et al., 2018c). 1089 

Continental breakup along the Labrador Sea axis propagated to the region from the south 1090 
(Chalmers and Pulvertaft, 2001; Peace et al., 2018a), and considerable magmatism occurred 1091 
prior to emplacement of the magmas usually attributed to a plume head (McWhae et al., 1980; 1092 
Larsen et al., 2009). At the Davis Strait and the GIFR, that magmatism occurred at locations 1093 
where propagating breakup rifts encountered barriers that stalled progress (Peace et al., 2017a). 1094 



 

 

In the case of the GIFR, a major focus of plume models (Foulger et al. this volume), volcanism 1095 
developed at a locality where rifts propagating from both north and south were unable to break 1096 
through transverse inherited orogenic structures.  1097 

7.2 Summary of spatial-temporal and magmatic-lithospheric relationships 1098 

All the locations reviewed herein show evidence for prolonged phases of rifting prior to LIP 1099 
magmatism and breakup. In many cases, this rifting is thought to be genetically linked to 1100 
breakup (e.g. rifting prior to the opening of the North Atlantic; e.g., Péron-Pinvidic et al., 2017). 1101 
At other locations earlier rifting events may have been unassociated with the final breakup 1102 
episode and the production of the first true oceanic crust. In all cases reviewed here, the onset 1103 
of LIP magmatism and often eruption of the main volume significantly overlapped with or 1104 
postdated SDR- and initial-oceanic-crust production. Such magmatism is inconsistent with 1105 
plume impact driving sometimes long-lasting initial rifting. Instead, it suggests that magmatism 1106 
was a consequence of the same mechanism that triggered by rifting and/or breakup. 1107 

Following plume arrival, widespread magmatism is predicted to occur in the region underlain 1108 
by hot plume head material (Saunders et al., 1992; Saunders et al., 2007). This region is inferred 1109 
to be circular, with a diameter of several 1000 kilometres in an idealised model. Buoyant melt 1110 
is expected to intrude the crust radially, governed by the circular stress field generated by the 1111 
impinging plume, and to form radial dyke swarms and sills, again in an idealised model. 1112 
Lithospheric structure is expected to impose only secondary control (Saunders et al., 2007). 1113 
The relatively small barriers presented by lithospheric inhomogeneities are expected to be 1114 
overwhelmed by the much larger scale hot upwelling mantle material. These predictions are, 1115 
however, not supported by observations of the disintegration of Pangaea. Instead, inherited 1116 
lithospheric structure exerts a control, not only on the locus of breakup axes but also on the 1117 
locations of magmatism including LIPs (Koopmann et al., 2014a; Peace et al., 2017a; Clarke 1118 
and Beutel, this volume). 1119 

7.3 Plate-driven breakup 1120 

Plate-driven breakup models for the dispersal of Pangaea have been proposed. For example 1121 
Keppie (2016) proposed that subduction at the peripheries of Pangaea can explain both the 1122 
motion, deformation and dispersal of Pangaea with a single mechanism. In addition, much 1123 
previous work links continental rifts and breakup on a range of scales and tectonic 1124 
environments to pre-existing structures (Wu et al., 2016; Petersen and Schiffer, 2016; Peace et 1125 
al., 2018b; Schiffer et al., 2018; Collanega et al., 2019; Schiffer et al., this volume). A link 1126 
between the intersection of propagating rifts with pre-existing suture zones and the production 1127 
of magmatism has been suggested based primarily on geological observations from Atlantic 1128 
margins and numerical modelling (Koopmann et al., 2014a; Schiffer et al., 2015; Peace et al., 1129 
2017a; Petersen et al., 2018). In these models, a barrier to rift propagation results in excess 1130 
magmatism by blocking and diverting mantle flow beneath a propagating rift axis.  1131 

Observations from the locations reviewed here provide support for this model (Fig. 6). In the 1132 
North, Central and South Atlantic and during breakup of East and West Gondwana, LIP 1133 
locations coincide with large-scale, pre-existing lithospheric structures (Fig. 7). The origin, size 1134 



 

 

and relative orientations of these structures with respect to approaching, propagating rifts is 1135 
variable. Nevertheless, the association is systematic and warrants further investigation. 1136 

7.4 Ocean Island Chains 1137 

The mantle plume hypothesis for LIP volcanism predicts that, following plume-head-related 1138 
flood-basalt eruptions, continued upwelling in the plume tail results in ongoing, small-volume 1139 
magmatism (Saunders et al., 1992; White, 1992). The motion of the overhead plates relative to 1140 
the “hotspot reference frame” transports these magmas away from the plume tail creating a 1141 
time-progressive trail of volcanism that ages with increasing distance from the contemporary 1142 
plume tail (e.g., Konrad et al., 2018). The existence of a time-progressive trail of volcanism, 1143 
most clearly observed in the Hawaiian-Emperor island/seamount chains, was the single most 1144 
influential factor in the development of the plume hypothesis and this characteristic is still 1145 
considered by some to comprise the strongest evidence of a mantle plume (Morgan and 1146 
Morgan, 2007). 1147 

This aspect of the plume model fits poorly the volcanism that followed emplacement of the 1148 
LIPs discussed in this paper. Courtillot et al. (2003) review the features of postulated plumes 1149 
worldwide. Of the four volcanic provinces we discuss (the CAMP, Karoo-Ferrar flood basalts, 1150 
South Atlantic Igneous Province and NAIP), Courtillot et al. (2003) associate only the South 1151 
Atlantic Igneous Province LIP flood-volcanism unambiguously with a time-progressive 1152 
volcanic trail. Moreover, Courtillot et al. (2003) tentatively associate the CAMP with small 1153 
volumes of volcanism at Fernando de Noronha on the Brazilian continental shelf and minor 1154 
volcanism onshore. Considering the CAMP is thought to be one of the largest continental LIPs 1155 
in the world (Denyszyn et al., 2018), the minimal evidence for plume tail volcanism makes the 1156 
model doubtful. In addition, conflicting evidence from geochemistry (Lopes and Ulbrich, 1157 
2015) and the chronology of volcanism along archipelago of Fernando de Noronha (Knesel et 1158 
al., 2011) casts further doubt on the applicability of an idealised plume model. The Karoo-1159 
Ferrar flood basalts are tentatively associated with a postulated plume currently centred beneath 1160 
Crozet/Prince Edward Island (Courtillot et al., 2003). The volcanics that represent the best 1161 
candidates for a time-progressive trail extending from that region comprise a ~200-km-wide 1162 
archipelago of five island groups across which recent volcanism is widespread and evidence 1163 
for systematic time-progression sparse. However, the oldest volcanism known is ~9 Ma 1164 
(Verwoerd et al., 1990)and there is no apparent link with the ~185-177 Ma Karoo-Ferrar flood 1165 
basalts.  1166 

There is evidence for some age progression in volcanics in the South Atlantic. Proposed plume-1167 
tail volcanism comprises the Rio Grande Rise, the Walvis aseismic ridge and the associated 1168 
Guyot Province that extends from the Etendeka continental flood basalts in Namibia to the 1169 
volcanically active island of Tristan da Cunha. Reported ages range from 114 Ma near Namibia 1170 
to 58–72 Ma at the SW end of the Walvis Ridge, and to 80–87 Ma for the Rio Grande Rise, 1171 
which is believed to represent the counterpart of the Walvis Ridge on the South American Plate 1172 
(Rohde et al., 2013). Age-progressive dates are obtained from the Walvis Ridge (O’Connor 1173 
and Jokat, 2015) but there is little corresponding evidence from the Rio Grande Rise. On the 1174 
contrary, continental material has recently been observed there, suggesting that the Rise is 1175 



 

 

possibly a micro-continental fragment (Sager, 2014) that could have been isolated by a series 1176 
of eastward ridge jumps (Graça et al., 2019). 1177 

In the NAIP the voluminous flood volcanism that formed the North Atlantic passive margins, 1178 
is popularly attributed to a plume head (e.g., Chalmers et al., 1995; Gill et al., 1995; Steinberger 1179 
et al., 2018). However, it is associated with no observed time-progressive volcanic trail (Peace 1180 
et al., 2017a; Foulger et al. this volume). The GIFR is often attributed to this but supporting 1181 
evidence is lacking (Foulger et al. this volume). Very few seamounts occur on the GIFR (Gaina 1182 
et al., 2017a) and few reliable dates are available. The GIFR is time-progressive only in the 1183 
same sense as the ocean floor, and it is interpreted to have formed as a consequence of 1184 
prolonged, highly volcanic lithospheric extension (Foulger et al. this volume). 1185 

8.0 Concluding remarks 1186 

This review highlights significant spatial-temporal variability between the locations of LIPs 1187 
and the initiation points of Pangaea disintegration. None of the regions we review fit 1188 
comfortably a plume-driven breakup model that predicts pre-breakup magmatism, plume tail 1189 
eruptions producing ocean island chains, and rifting radiating from the point of plume impact. 1190 
In contrast, most show multiple characteristics that are not fully compatible with this model, 1191 
including a reverse chronology of uplift, magmatism and rifting, and rifting propagating 1192 
towards LIPs. The idealised, generic plume-impingement model thus has difficulties fully 1193 
explaining the dispersal of Pangaea and associated magmatism.  1194 

Rifting and breakup driven primarily by far-field extensional forces, with magmatism 1195 
occurring as a consequence, under strong lithospheric control, is much more consistent with 1196 
observations that are common throughout the regions we review. These observations include: 1197 

• The supercontinent in the neighbourhood of future breakup experienced almost 1198 
continuous unrest, including extension and continental rifting and small-volume 1199 
magmatism for long periods prior to breakup (10s to 100s of Myr). 1200 

• Evidence for pre-LIP uplift is lacking. Margin uplift contemporaneous with breakup is 1201 
consistent with rift-shoulder uplift. 1202 

• Magmatism followed pre-existing structures that may have experienced volcanism 1203 
before. 1204 

• The source of magmas was distributed. Magmas did not arise from a single centre. 1205 
• Large-volume magmatism (LIP emplacement) occurred distal to simultaneous breakup-1206 

related rifting, which tended to migrate towards the new LIP. 1207 
• The geochemistry of LIP lavas, in particular their Ti contents, suggest a source in the 1208 

lithospheric mantle. 1209 
• The very rapid emplacement of the LIP lavas, with rates on the order of 106 km3 in 1 1210 

Myr, are incompatible with melt production on the same time-scale as eruption. They 1211 
can essentially only be explained as the draining of pre-existing melt reservoirs that 1212 
accumulated over a longer period of time than it took to drain them (Silver et al., 2006). 1213 

Other factors that likely exert some influence include spatially and temporally variable mantle-1214 
source temperature and composition as rifts propagate laterally and asthenosphere wells up 1215 



 

 

from beneath lithosphere initially 100-200 km thick (Brandl et al., 2013; Langmuir, 2013). 1216 
Other processes that may encourage or be consequential to rifting include delamination of 1217 
lower lithosphere, small-scale convection (King and Anderson, 1995; King and Anderson, 1218 
1998; Simon et al., 2009; Peace et al., 2017a) along Archean craton boundaries and 1219 
fragmentation of the new margins to form microcontinents (Schiffer et al., 2018). In 1220 
conclusion, a lithosphere-centred model for Pangaea breakup is the simplest that can explain 1221 
the primary, common features expressed along the passive margins of the former 1222 
supercontinent Pangaea. 1223 
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 2579 

Figure 1. An overview of the disintegration of Pangaea (e.g., Frizon De Lamotte et al., 2015) 2580 
using the palaeogeographic reconstruction compiled into the PALEOMAP PaleoAtlas for 2581 
GPlates (Scotese, 2016) plotted using a Mollweide projection and shown at 0, 50, 100, 150, 2582 
200 and 250 Ma. 2583 



 

 

 2584 

Figure 2. Breakup of the Central Atlantic shown at 170 Ma. a) Reconstructed present day 2585 
Bouguer gravity anomaly (world gravity map; Balmino et al., 2012). b) Reconstructed present 2586 
day crustal thickness according to the CRUST1.0 model (Laske et al., 2013). Representative 2587 
LIP magmatism, SDRs, and earliest oceanic magnetic anomalies are shown with associated 2588 
ages where available. NA = North America, SA = South America, AFR = Africa.  2589 



 

 

 2590 

Figure 3. Breakup of East and West Gondwana shown at 160 Ma. a) Reconstructed present 2591 
day Bouguer gravity anomaly (world gravity map; Balmino et al., 2012). b) Reconstructed 2592 
present day crustal thickness according to the CRUST1.0 model (Laske et al., 2013). 2593 
Representative LIP magmatism, SDRs, and earliest oceanic magnetic anomalies are shown 2594 
with associated ages where available (Phethean et al., 2016; Klimke and Franke, 2016; Sauter 2595 
et al., 2018). AFR = Africa, MAD = Madagascar, DFZ = Davie Fracture Zone; IND = India, 2596 
SRI = Sri Lanka, ANT = Antarctica, and EW = Explora Wedge.  2597 
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 2599 

Figure 4. Breakup of the Southern Atlantic shown at 120 Ma. a) Reconstructed present day 2600 
Bouguer gravity anomaly (world gravity map; Balmino et al., 2012). b) Reconstructed present 2601 
day crustal thickness according to the CRUST1.0 model (Laske et al., 2013). Representative 2602 
LIP magmatism, SDRs, and earliest oceanic magnetic anomalies are shown with associated 2603 
ages where available (Koopmann et al., 2016). AFR = Africa, SA = South America, & AFFZ 2604 
= Agulhas-Falkland Fracture Zone. 2605 
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 2607 

Figure 5. Breakup of the North Atlantic shown at 46 Ma. a) Reconstructed present day Bouguer 2608 
gravity anomaly (world gravity map; Balmino et al., 2012). b) Reconstructed present day 2609 
crustal thickness according to the CRUST1.0 model (Laske et al., 2013). LIP magmatism, 2610 
SDRs, and earliest oceanic magnetic anomalies are shown with associated ages where 2611 
available. Representative magmatism ages are primarily modified from the compilation made 2612 
for the NAGTEC project (Wilkinson et al., 2016). Location names: AB = Alkaline Basalt; US: 2613 
NA = North America, GL = Greenland, EUR = Europe, and CGFZ = Charlie-Gibbs Fracture 2614 
Zone. 2615 
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 2618 

Fig. 6. Schematic reconstructions of A) Laurasia (Cocks and Torsvik, 2011) and B) Gondwana 2619 
(Stampfli et al., 2013) where: green = present-day land areas; brown = cratons; blue lines = 2620 
suture zones; yellow = incipient breakup axes; orange circles = intersection of breakup axes 2621 
with suture zones and red dotted lines = schematic outline of LIPs. C) A global overview of the 2622 
relationship between continental crust (white=offshore; pale grey = onshore), LIPs (dark 2623 
grey), proposed hotspots (red dots) and the reconstructed pre-rift intersection points between 2624 
suture zones and continental breakup (orange dots). Orange borders on LIPs indicate those 2625 
that may have been involved with Pangaean dispersal. The size of the red dots (representing 2626 
hotspots) is related to their depths proposed by Courtillot et al. (2003) such that large dots = 2627 
core-mantle boundary; medium dots = the base of the upper mantle; and small dots = the 2628 
lithosphere. The orange lines show the interpolation between conjugate intersection points, 2629 
and the age of oceanic crust is shown in blue. This figure illustrates the relationship between 2630 
breakup-suture intersections and many LIPs that formed between the conjugate margins where 2631 
intersection points existed. LIPs on this figure are taken from Ernst (2014). Seafloor age is 2632 
from Seton et al. (2012). 2633 


